1
|
Maurya N, Meena A, Luqman S. Role of microRNAs in lung oncogenesis: Diagnostic implications, resistance mechanisms, and therapeutic strategies. Int J Biol Macromol 2025:144261. [PMID: 40381781 DOI: 10.1016/j.ijbiomac.2025.144261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 04/16/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
Lung cancer continues to pose a significant global health concern, presenting a formidable challenge on a worldwide scale, necessitating a deeper understanding of molecular mechanisms underlying its pathogenesis and treatment responses. microRNA (miRNA) modulation in the context of lung cancer therapeutics aims to unravel the complexities of miRNA-mediated regulatory networks. This comprehensive review elucidates microRNA's diverse roles in lung cancer, encompassing their involvement in key signaling pathways, cellular processes, the regulation of oncogenic or tumor-suppressive targets, and drug sensitivity. Moreover, this review critically examines the potential of miRNAs as diagnostic and prognostic biomarkers and their implications in therapeutic interventions for lung cancer. microRNAs are effective in making lung cancer therapy more efficient. They can make tumor cells more responsive to chemotherapy, radiation, and targeted therapies. microRNAs can target the drug efflux mechanism, increasing the effectiveness of chemotherapy agents and decreasing resistance. Furthermore, microRNAs play a crucial role in developing and inhibiting the resistance mechanisms against conventional treatments; improving the dysregulated expression of microRNAs enhances the therapeutic efficacy of existing therapies. By compiling knowledge on miRNA-mediated processes related to lung cancer, this review offers a comprehensive resource for researchers to understand and address the complexities of oncogenesis, diagnostics, resistance mechanisms, and therapeutic strategies.
Collapse
Affiliation(s)
- Nidhi Maurya
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Abha Meena
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India
| | - Suaib Luqman
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, Uttar Pradesh, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 001, Uttar Pradesh, India.
| |
Collapse
|
2
|
Yao X, Gao C, Sun C, Chen ZS, Zhuang J. Epigenetic code underlying EGFR-TKI resistance in non-small cell lung cancer: Elucidation of mechanisms and perspectives on therapeutic strategies. Drug Discov Today 2025; 30:104321. [PMID: 40032137 DOI: 10.1016/j.drudis.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype, and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the core drugs used for its treatment. However, the emergence of drug resistance poses a significant challenge to their clinical efficacy. As a significant role-player in cancer development and maintenance, histone modifications, DNA methylation and noncoding RNA (ncRNA) changes have been proven to play a crucial part in driving EGFR-TKI resistance, which provides promising potential therapeutic targets and biomarkers for overcoming drug resistance. This review delves into the complex epigenetic mechanisms that cause EGFR-TKI resistance and emphasizes the potential of combined epigenetic therapies, aiming to provide better-targeted treatment options for NSCLC patients with NSCLC and drive innovative strategies to overcome the challenges of drug resistance.
Collapse
Affiliation(s)
- XiaoYu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| |
Collapse
|
3
|
He YZ, Li XN, Li HT, Bai XH, Liu YC, Li FN, Lv BL, Qi TJ, Zhao XM, Li S. FTO promotes gefitinib-resistance by enhancing PELI3 expression and autophagy in non-small cell lung cancer. Pulm Pharmacol Ther 2024; 87:102317. [PMID: 39154901 DOI: 10.1016/j.pupt.2024.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The established recognition of N6-methyladenosine (m6A) modification as an indispensable regulatory agent in human cancer is widely accepted. However, the understanding of m6A's role and the mechanisms underlying its contribution to gefitinib resistance is notably limited. Herein, using RT-qPCR, Western blot, Cell proliferation and apoptosis, as well as RNA m6A modification assays, we substantiated that heightened FTO (Fat Mass and Obesity-associated protein) expression substantially underpins the emergence of gefitinib resistance in NSCLC cells. This FTO-driven gefitinib resistance is hinged upon the co-occurrence of PELI3 (Pellino E3 Ubiquitin Protein Ligase Family Member 3) expression and concurrent autophagy activation. Manipulation of PELI3 expression and autophagy activation, including its attenuation, was efficacious in both inducing and overcoming gefitinib resistance within NSCLC cells, as validated in vitro and in vivo. In summary, this study has successfully elucidated the intricate interplay involving FTO-mediated m6A modification, its consequential downstream effect on PELI3, and the concurrent involvement of autophagy in fostering the emergence of gefitinib resistance within the therapeutic context of NSCLC.
Collapse
Affiliation(s)
- Yu-Zheng He
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xiao-Ning Li
- Department of Thoracic Surgery, Hebei General Hospital, No. 348 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Hai-Tao Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xian-Hua Bai
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Yan-Chao Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Fan-Nian Li
- Department of Thoracic Surgery, The First Hospital of XingTai, No.376 Shunde Road, XingTai City, Hebei Province, 054001, China
| | - Bao-Lei Lv
- Department of Thoracic Surgery, Shijiazhuang People's Hospital, No.365 Jianhua South Street, Shijiazhuang, 050000, Hebei Province, China
| | - Tian-Jie Qi
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xiu-Min Zhao
- Department of The integrated treatment of traditional Chinese and Western Medicine, The Second Hospital of Hebei Medical University, No.215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Shuai Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Respiratory Critical Care, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
4
|
Li Z, Liu J, Wang P, Zhang B, He G, Yang L. The novel miR-873-5p-YWHAE-PI3K/AKT axis is involved in non-small cell lung cancer progression and chemoresistance by mediating autophagy. Funct Integr Genomics 2024; 24:33. [PMID: 38363382 DOI: 10.1007/s10142-024-01295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) encompasses approximately 85% of all lung cancer cases and is the foremost cancer type worldwide; it is prevalent in both sexes and known for its high fatality rate. Expanding scientific inquiry underscores the indispensability of microRNAs in NSCLC. Here, we probed the impact of miR-873-5p on NSCLC development and chemoresistance. qRT‒PCR was used to measure the miR-873-5p level in NSCLC cells with or without chemoresistance. A model of miR-873-5p overexpression was constructed. The proliferation and viability of NSCLC cells were evaluated through CCK8 and colony formation experiments. Cell migration and invasion were monitored via Transwell assays. Western blotting was used to determine the levels of YWHAE, PI3K, AKT, EMT, apoptosis, and autophagy-related proteins. The sensitivity of NSCLC cells to the chemotherapeutic agent gefitinib was assessed. Additionally, the correlation of YWHAE with miR-873-5p was validated via a dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Overexpressed miR-873-5p suppressed migration, proliferation, invasion, and EMT while concurrently stimulating apoptotic processes. miR-873-5p was downregulated in NSCLC cells resistant to gefitinib. Upregulating miR-873-5p reversed gefitinib resistance by inducing autophagy. YWHAE was confirmed to be a downstream target of miR-873-5p. YWHAE overexpression promoted the malignant behaviors of NSCLC cells and boosted tumor growth, while these effects were reversed following miR-873-5p overexpression. Subsequent investigations revealed that overexpressing YWHAE promoted PI3K/AKT pathway activation, with miR-873-5p displaying inhibitory effects on the YWHAE-mediated PI3K/AKT signaling cascade. miR-873-5p affects proliferation, invasion, migration, EMT, autophagy, and chemoresistance in NSCLC by controlling the YWHAE/PI3K/AKT axis.
Collapse
Affiliation(s)
- Zhifeng Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Jinglei Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Ping Wang
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Boyu Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Guanghui He
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China
| | - Liwei Yang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050000, China.
| |
Collapse
|
5
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Li SJ, Cai ZW, Yang HF, Tang XD, Fang X, Qiu L, Wang F, Chen XL. A Next-Generation Sequencing of Plasma Exosome-Derived microRNAs and Target Gene Analysis with a Microarray Database of Thermally Injured Skins: Identification of Blood-to-Tissue Interactions at Early Burn Stage. J Inflamm Res 2021; 14:6783-6798. [PMID: 34916825 PMCID: PMC8670889 DOI: 10.2147/jir.s343956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Plasma exosome-derived microRNA (miRNA) profiles following thermal injury and their relationship with gene expression derangements in burned skin remain unexplored. This study focused on the identification of key miRNA-mRNA axes in potential blood-to-tissue interactions at early burn stage. METHODS Plasma exosomes were obtained from 6 severe burn patients 4-7 days post injury and 6 healthy volunteers. Next-generation sequencing (NGS) of exosomal small RNAs presented the differentially expressed miRNAs (DEMs). Target genes of the DEMs were predicted in the mirDIP database. Dataset GSE8056 was enrolled to acquire differentially expressed genes (DEGs) in burned skin compared to normal skin. Overlap between the DEGs and target genes of the DEMs were focus genes. The protein-protein interaction (PPI) network and enrichment analyses of the focus genes demonstrated hub genes and suggested underlying mechanisms and pathways. The hub genes and upstream DEMs were selected to construct key miRNA-mRNA axes. RESULTS The NGS of plasma exosome-derived small RNAs identified 85 DEMs (14 downregulated miRNAs and 71 upregulated miRNAs) with 12,901 predicted target genes. Dataset GSE8056 exhibited 1861 DEGs in partial-thickness burned skins 4-7 days postburn. The overlap between DEGs and target genes of DEMs displayed 1058 focus genes. The top 9 hub genes (CDK1, CCNB1, CCNA2, BUB1B, PLK1, KIF11, AURKA, NUSAP1 and CDCA8) in the PPI network of the focus genes pointed to 16 upstream miRNAs in DEMs, including 4 downregulated miRNAs (hsa-miR-6848-3p, has-miR-4684-3p, has-miR-4786-5p and has-miR-365a-5p) and 12 upregulated miRNAs (hsa-miR-6751-3p, hsa-miR-718, hsa-miR-4754, hsa-miR-6754-3p, hsa-miR-4739, hsa-miR-6739-5p, hsa-miR-6884-3p, hsa-miR-1224-3p, hsa-miR-6878-3p, hsa-miR-6795-3p, hsa-miR-550a-3p, and hsa-miR-550b-3p). A key miRNA-mRNA network in potential blood-to-tissue interactions at early burn stage was therefore constructed. CONCLUSION An NGS and bioinformatic analysis in the study identified key miRNA-mRNA axes in potential blood-to-tissue interactions at early burn stage, suggesting plasma exosome-derived miRNAs may impact on the alteration patterns of gene expressions in a burn wound.
Collapse
Affiliation(s)
- Shi-Ji Li
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhi-Wen Cai
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Hong-Fu Yang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xu-Dong Tang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiao Fang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Le Qiu
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Fei Wang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
7
|
Li J, Mo R, Zheng L. Inhibition of the cell migration, invasion and chemoresistance of colorectal cancer cells through targeting KLF3 by miR-365a-3p. J Cancer 2021; 12:6155-6164. [PMID: 34539888 PMCID: PMC8425218 DOI: 10.7150/jca.61967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Metastasis and chemoresistance limit treatment efficacy of colorectal cancer (CRC) patients. MicroRNAs (miRNAs) have been believed to be candidate biomarkers for tumor cell proliferation, metastasis and chemoresistance, but the related molecular mechanisms are not clear for prognosis prediction. Aims: We aimed to investigate the role of miR-365a-3p in metastasis and chemoresistance of CRC. Methods: The expression levels of miR-365a-3p in clinical CRC tissues were analyzed. The effects of miR-365a-3p expression levels on tumor chemoresistance, invasion and migration were also determined. A dual luciferase reporter gene assay was used to determine the effect of miR-365a-3p on its target gene, Kruppel-like factor 3 (KLF3), and the effect of the miR-365a-3p/KLF3 axis on CRC cell chemoresistance, migration and invasion was further investigated. Results: In patients with CRC with lymph node or distant organ metastasis or in CRC cell lines, the expression levels of miR-365a-3p were significantly downregulated. In addition, the findings of Transwell assays demonstrated that miR-365a-3p significantly suppressed CRC cell migration and invasion. The dual luciferase reporter gene assay results suggested that miR-365a-3p may play an important role in the regulation of migration, invasion and chemoresistance in CRC cells. Conclusions: The findings of present study provided evidence to suggest that miR-365a-3p may be a potential tumor suppressor gene in CRC and may inhibit the migration, invasion and chemoresistance of CRC cells. These results suggested that targeting miR-365a-3p/KLF3 axis may represent a potential therapeutic intervention for metastatic disease in patients with CRC.
Collapse
Affiliation(s)
- Jing Li
- Department of Emergency Surgery, Hainan General Hospital, Hainan Affiliated hospital of Hainan medical university, Haikou, Hainan Province, 570311, China
| | - Rubing Mo
- Department of Pneumology, Hainan General Hospital, Hainan Affiliated hospital of Hainan medical university, Haikou, Hainan Province, 570311, China
| | - Linmei Zheng
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated hospital of Hainan medical university, Haikou, Hainan Province, 570311, China
| |
Collapse
|