1
|
Squassina A, Pisanu C, Menesello V, Meloni A, Congiu D, Manchia M, Paribello P, Abate M, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Treatment-Resistant Depression and Response to Electroconvulsive Therapy: A Pilot Longitudinal Study. J ECT 2025; 41:93-100. [PMID: 39178054 DOI: 10.1097/yct.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES In this study, we investigated if changes in leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNA-cn), 2 markers of cellular aging, are associated with treatment-resistant depression (TRD) and with response to electroconvulsive therapy (ECT). METHODS LTL and mtDNA-cn were measured in 31 TRD patients before (T0), 1 week (T1), and 4 weeks (T2) after the ECT course, as well as in a sample of 65 healthy controls. RESULTS TRD patients had significantly shorter LTL and higher mtDNA-cn compared with healthy controls at baseline. In the TRD sample, LTL was inversely correlated with Montgomery-Åsberg Depression Rating Scale scores at baseline. Baseline levels of LTL or mtDNA-cn were not correlated with response to ECT. Similarly, changes in LTL or mtDNA-cn were not associated with response to ECT either when considered as a dichotomous trait (responders vs nonresponders) or as a percentage change in symptoms improvements. CONCLUSIONS Ours is the first longitudinal study exploring the role of LTL and mtDNA-cn in response to ECT. Findings of this pilot investigation suggest that LTL and mtDNA-cn may constitute disease biomarkers for TRD but are not involved in response to ECT.
Collapse
Affiliation(s)
- Alessio Squassina
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anna Meloni
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara," Verona, Italy
| | | | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | | | | |
Collapse
|
2
|
Solh T, Cevher ŞC. The relationship between neuropsychiatric disorders and aging: A review on telomere length, oxidative stress, and inflammation. Behav Brain Res 2025; 485:115528. [PMID: 40064353 DOI: 10.1016/j.bbr.2025.115528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Aging is the group of time-independent changes that occur in an organism and that ultimately end in death. The relationship between aging and neuropsychiatric disorders is complex. Not only does the incidence of several neuropsychiatric disorders rise with age, but also these disorders are linked with premature mortality and are even thought to be syndromes of accelerated biological aging. Oxidative stress, inflammation and telomere length are factors commonly used to assess biological aging. The purpose of this review is to sum up the existing information about the state of those factors in schizophrenia, depression, bipolar disorder and anxiety disorders, and to summarize the effects of treatment on telomere length in patients with those neuropsychiatric disorders. The main focus, however, is on telomere length seeing the highly controversial study results on this biomarker in neuropsychiatric disorders. There is no scientific consensus on the state of those factors in the mentioned neuropsychiatric disorders or on the effects of treatment on telomere length, thus further research is needed where confounding variables are controlled. Regarding telomere length, it is highly important to explore whether short telomeres lead to the development of neuropsychiatric disorders or vice versa, as it carries huge clinical potential.
Collapse
Affiliation(s)
- Tala Solh
- Gazi University, Institute of Science, Department of Biology, Ankara 06500, Turkey.
| | - Şule Coşkun Cevher
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
3
|
Sakrajda K, Rybakowski JK. The Mechanisms of Lithium Action: The Old and New Findings. Pharmaceuticals (Basel) 2025; 18:467. [PMID: 40283904 PMCID: PMC12030015 DOI: 10.3390/ph18040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/19/2025] [Accepted: 01/23/2025] [Indexed: 04/29/2025] Open
Abstract
Despite lithium's presence in modern psychiatry for three-quarters of a century, the mechanisms of its therapeutic action have not been fully elucidated. This article presents the evolution of the views on these mechanisms, and both the old and new findings are discussed. Among the old mechanisms, lithium's effect on the purinergic system; electrolyte metabolism; membrane transport; and second messenger systems, namely, cyclic nucleotide and phosphatidylinositol (PI), glycogen synthase kinase-3beta (GSK-3β), brain-derived neurotrophic factor, and neurotransmitters, are discussed. The new data were obtained from in vitro studies, molecular biology, and genetic research. They showed the effects of lithium on the immune system, biological rhythms, telomere functions, and mitochondria. In this article, each lithium mechanism is considered in the light of its association with the pathogenesis of bipolar disorder or/and as a marker of the lithium response. Although not exhaustive, this review elucidates the multiple potential mechanisms of lithium action. It was also observed that many seemingly "old" mechanisms have experienced a resurgence in research conducted during the 21st century. Additionally, many studies converged on the previously postulated mechanisms of lithium inhibiting GSK-3β and PI.
Collapse
Affiliation(s)
- Kosma Sakrajda
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Janusz K. Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
4
|
Meloni A, Paribello P, Pinna M, Contu M, Ardau R, Chillotti C, Congiu D, Gennarelli M, Minelli A, Buson L, Severino G, Pisanu C, Manchia M, Squassina A. Mitochondrial DNA copy number is significantly increased in bipolar disorder patients and is correlated with long-term lithium treatment. Eur Neuropsychopharmacol 2025; 91:37-44. [PMID: 39612728 DOI: 10.1016/j.euroneuro.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Mitochondrial dysfunctions have been reported in bipolar disorder (BD), but their role in the etiopathogenesis of BD as well as their implications in modulating response to pharmacological treatments with psychotropic medications have been scarcely explored. Mitochondrial DNA copy number (mtDNA-cn) has been linked to mitochondria functioning, and, despite some degree of inconsistence, previous findings showed that BD patients present significant differences in mtDNA-cn compared to healthy controls. Here we measured mtDNA-cn in a sample of 89 patients with BD and 78 healthy controls (HC). Patients in the BD sample were treated either with lithium (n = 47) and characterized as responders (n = 22) or non-responders (n = 25), or with other mood stabilizers (n = 42). BD patients had larger mtDNA-cn compared to HC (adjusted model: F2=9.832; p = 0.000095; contribution of diagnosis F1= 10.798; p = 0.001). When the BD sample was stratified for treatment exposure, mtDNA-cn was lower in patients treated with lithium compared to those treated with other mood stabilizers (adjusted model: F4=23.770, p = 7.0929E-13; contribution of treatment: F1=54.300, p = 1.55E-10). Moreover mtDNA-cn was higher in patients treated with other mood stabilizers compared to controls and Li-treated BD patients (F3=28.125, p = 1.36E-14; contribution of groups F2=36.156, p = 1.25E-13). Finally, there was no difference in mtDNA-cn levels in lithium responders compared to non-responders and neither between the two diagnostic groups (BD type 1 and 2). Our findings suggest that BD may be associated with mitochondrial dysfunctions, and that exposure to lithium but not to other mood stabilizers may restore these abnormalities, though this does not appear correlated with the clinical efficacy of lithium.
Collapse
Affiliation(s)
- Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marco Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Martina Contu
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Lisa Buson
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Ormerod MBEG, Ueland T, Aas M, Hjell G, Rødevand L, Sæther LS, Lunding SH, Johansen IT, Mlakar V, Andreou D, Ueland T, Lagerberg TV, Melle I, Djurovic S, Andreassen OA, Steen NE. Limited evidence of association between dysregulated immune marker levels and telomere length in severe mental disorders. Acta Neuropsychiatr 2025; 37:e4. [PMID: 39844366 DOI: 10.1017/neu.2024.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Accelerated ageing indexed by telomere attrition is suggested in schizophrenia spectrum- (SCZ) and bipolar disorders (BD). While inflammation may promote telomere shortening, few studies have investigated the association between telomere length (TL) and markers of immune activation and inflammation in severe mental disorders. METHODS Leucocyte TL defined as telomere template/amount of single-copy gene template (T/S ratio), was determined in participants with SCZ (N = 301) or BD (N = 211) and a healthy control group (HC, N = 378). TL was analysed with linear regressions for associations with levels of 12 immune markers linked to SCZ or BD. Adjustments were made for a broad range of potential confounding variables. TL was measured by quantitative polymerase chain reaction (qPCR) and the immune markers were measured by enzyme immunoassays. RESULTS A positive association between levels of soluble tumour necrosis factor receptor 1A (sTNF-R1) and TL in SCZ (β = 0.191, p = 0.012) was observed. Plasma levels of the other immune markers were not significantly associated with TL in the BD, SCZ or HC groups. CONCLUSION There was limited evidence of association between immune markers and TL in SCZ and BD. The results provide little support for involvement of immune dysregulation, as reflected by current systemic markers, in telomere attrition-related accelerated ageing in severe mental disorders.
Collapse
Affiliation(s)
- Monica B E G Ormerod
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Monica Aas
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, England, UK
- Department of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway
| | - Gabriela Hjell
- Department of Psychiatry, Ostfold Hospital, Graalum, Norway
| | - Linn Rødevand
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn Sofie Sæther
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | | | - Vid Mlakar
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Dimitrios Andreou
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Torill Ueland
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Trine V Lagerberg
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
6
|
Kamp D. A physical perspective on lithium therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:55-74. [PMID: 39547449 DOI: 10.1016/j.pbiomolbio.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
Lithium salts have strong medical properties in neurological disorders such as bipolar disorder and lithium-responsive headaches. They have recently gathered attention due to their potential preventive effect in viral infections. Though the therapeutic effect of lithium was documented by Cade in the late 1940s, its underlying mechanism of action is still disputed. Acute lithium exposure has an activating effect on excitable organic tissue and organisms, and is highly toxic. Lithium exposure is associated with a strong metabolic response in the organism, with large changes in phospholipid and cholesterol expression. Opposite to acute exposure, this metabolic response alleviates excessive cellular activity. The presence of lithium ions strongly affects lipid conformation and membrane phase unlike other alkali ions, with consequences for membrane permeability, buffer property and excitability. This review investigates how lithium ions affect lipid membrane composition and function, and how lithium response might in fact be the body's attempt to counteract the physical presence of lithium ions at cell level. Ideas for further research in microbiology and drug development are discussed.
Collapse
Affiliation(s)
- Dana Kamp
- The Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
| |
Collapse
|
7
|
Courtes AC, Jha R, Topolski N, Soares JC, Barichello T, Fries GR. Exploring accelerated aging as a target of bipolar disorder treatment: A systematic review. J Psychiatr Res 2024; 180:291-300. [PMID: 39476539 PMCID: PMC11793687 DOI: 10.1016/j.jpsychires.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Bipolar disorder (BD) has been linked to accelerated aging processes, with many studies suggesting that drugs used to treat BD may modulate pathways related to aging. This systematic review aimed to determine whether FDA-approved pharmacotherapies for BD have reported effects on aging biomarkers across clinical and preclinical studies. We conducted searches in PubMed and PsychINFO and followed PRISMA guidelines. Out of 6400 records identified, 19 studies met the inclusion criteria. Most preclinical studies tested the effects of BD drugs, especially lithium, on lifespan and telomere biology in cell and animal models. Clinical studies predominantly focused on lithium, evaluating aging markers like telomere length, telomerase, mitochondrial DNA copy number, and epigenetic age acceleration in individuals with BD. Findings indicate that chronic lithium treatment is associated with modulatory effects on aging biomarkers, particularly increased telomere length and telomerase activity. Conversely, some negative results were also reported. Limited evidence suggests potential aging-modulating properties of other mood stabilizers like valproic acid and lamotrigine, evidencing that further investigation is required. Despite variability across studies, the overall findings support the notion that pharmacotherapies used in BD present many effects of aging biomarkers. However, the field is still developing, with a clear emphasis on lithium and a lack of standardized methods to evaluate aging biomarkers in clinical samples. Further research exploring the anti-accelerated aging effects of BD drugs beyond lithium, their mechanisms of action, and potential synergistic effects is warranted.
Collapse
Affiliation(s)
- Alan C Courtes
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA
| | - Rohit Jha
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA
| | - Natasha Topolski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Jair C Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX, 77054, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Mutz J, Wong WLE, Powell TR, Young AH, Dawe GS, Lewis CM. The duration of lithium use and biological ageing: telomere length, frailty, metabolomic age and all-cause mortality. GeroScience 2024; 46:5981-5994. [PMID: 38539016 PMCID: PMC11493902 DOI: 10.1007/s11357-024-01142-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/17/2024] [Indexed: 10/23/2024] Open
Abstract
Lithium is an established first-line treatment for bipolar disorder. Beyond its therapeutic effect as a mood stabiliser, lithium exhibits potential anti-ageing effects. This study aimed to examine the relationship between the duration of lithium use, biological ageing and mortality. The UK Biobank is an observational study of middle-aged and older adults. We tested associations between the duration of lithium use (number of prescriptions, total duration of use and duration of the first prescription period) and telomere length, frailty, metabolomic age (MileAge) delta, pulse rate and all-cause mortality. Five hundred ninety-one individuals (mean age = 57.49 years; 55% females) had been prescribed lithium. There was no evidence that the number of prescriptions (β = - 0.022, 95% CI - 0.081 to 0.037, p = 0.47), the total duration of use (β = - 0.005, 95% CI - 0.023 to 0.013, p = 0.57) or the duration of the first prescription period (β = - 0.018, 95% CI - 0.051 to 0.015, p = 0.29) correlated with telomere length. There was also no evidence that the duration of lithium use correlated with frailty or MileAge delta. However, a higher prescription count and a longer duration of use was associated with a lower pulse rate. The duration of lithium use did not predict all-cause mortality. We observed no evidence of associations between the duration of lithium use and biological ageing markers, including telomere length. Our findings suggest that the potential anti-ageing effects of lithium do not differ by the duration of use.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK.
| | - Win Lee Edwin Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Timothy R Powell
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK
| | - Allan H Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London & Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, London, UK
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, Memory Lane, London, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
9
|
Pisanu C, Congiu D, Meloni A, Paribello P, Patrinos GP, Severino G, Ardau R, Chillotti C, Manchia M, Squassina A. Dissecting the genetic overlap between severe mental disorders and markers of cellular aging: Identification of pleiotropic genes and druggable targets. Neuropsychopharmacology 2024; 49:1033-1041. [PMID: 38402365 PMCID: PMC11039620 DOI: 10.1038/s41386-024-01822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
Patients with severe mental disorders such as bipolar disorder (BD), schizophrenia (SCZ) and major depressive disorder (MDD) show a substantial reduction in life expectancy, increased incidence of comorbid medical conditions commonly observed with advanced age and alterations of aging hallmarks. While severe mental disorders are heritable, the extent to which genetic predisposition might contribute to accelerated cellular aging is not known. We used bivariate causal mixture models to quantify the trait-specific and shared architecture of mental disorders and 2 aging hallmarks (leukocyte telomere length [LTL] and mitochondrial DNA copy number), and the conjunctional false discovery rate method to detect shared genetic loci. We integrated gene expression data from brain regions from GTEx and used different tools to functionally annotate identified loci and investigate their druggability. Aging hallmarks showed low polygenicity compared with severe mental disorders. We observed a significant negative global genetic correlation between MDD and LTL (rg = -0.14, p = 6.5E-10), and no significant results for other severe mental disorders or for mtDNA-cn. However, conditional QQ plots and bivariate causal mixture models pointed to significant pleiotropy among all severe mental disorders and aging hallmarks. We identified genetic variants significantly shared between LTL and BD (n = 17), SCZ (n = 55) or MDD (n = 19), or mtDNA-cn and BD (n = 4), SCZ (n = 12) or MDD (n = 1), with mixed direction of effects. The exonic rs7909129 variant in the SORCS3 gene, encoding a member of the retromer complex involved in protein trafficking and intracellular/intercellular signaling, was associated with shorter LTL and increased predisposition to all severe mental disorders. Genetic variants underlying risk of SCZ or MDD and shorter LTL modulate expression of several druggable genes in different brain regions. Genistein, a phytoestrogen with anti-inflammatory and antioxidant effects, was an upstream regulator of 2 genes modulated by variants associated with risk of MDD and shorter LTL. While our results suggest that shared heritability might play a limited role in contributing to accelerated cellular aging in severe mental disorders, we identified shared genetic determinants and prioritized different druggable targets and compounds.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
- College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al‑Ain, Abu Dhabi, UAE
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
10
|
Spano L, Marie-Claire C, Godin O, Lebras A, Courtin C, Laplanche JL, Leboyer M, Aouizerate B, Lefrere A, Belzeaux R, Courtet P, Olié E, Dubertret C, Schwan R, Aubin V, Roux P, Polosan M, Samalin L, Haffen E, Bellivier F, Etain B. Decreased telomere length in a subgroup of young individuals with bipolar disorders: replication in the FACE-BD cohort and association with the shelterin component POT1. Transl Psychiatry 2024; 14:131. [PMID: 38429270 PMCID: PMC10907586 DOI: 10.1038/s41398-024-02824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024] Open
Abstract
Bipolar disorder (BD) has been associated with premature cellular aging with shortened telomere length (TL) as compared to the general population. We recently identified a subgroup of young individuals with prematurely shortened TL. The aims of the present study were to replicate this observation in a larger sample and analyze the expression levels of genes associated with age or TL in a subsample of these individuals. TL was measured on peripheral blood DNA using quantitative polymerase chain reaction in a sample of 542 individuals with BD and clustering analyses were performed. Gene expression level of 29 genes, associated with aging or with telomere maintenance, was analyzed in RNA samples from a subsample of 129 individuals. Clustering analyses identified a group of young individuals (mean age 29.64 years), with shorter TL. None of the tested clinical variables were significantly associated with this subgroup. Gene expression level analyses showed significant downregulation of MYC, POT1, and CD27 in the prematurely aged young individuals compared to the young individuals with longer TL. After adjustment only POT1 remained significantly differentially expressed between the two groups of young individuals. This study confirms the existence of a subgroup of young individuals with BD with shortened TL. The observed decrease of POT1 expression level suggests a newly described cellular mechanism in individuals with BD, that may contribute to telomere shortening.
Collapse
Affiliation(s)
- Luana Spano
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Cynthia Marie-Claire
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France.
| | - Ophélia Godin
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
| | - Apolline Lebras
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Cindie Courtin
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
| | - Jean-Louis Laplanche
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Département de Biochimie et Biologie Moléculaire, DMU BioGeM, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Marion Leboyer
- Fondation FondaMental, Créteil, France
- Université Paris Est Créteil, INSERM U955, IMRB, Translational NeuroPsychiatry Laboratory, Créteil, France
- AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMUIMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France
- Centre Hospitalier Charles Perrens, Laboratoire NutriNeuro (UMR INRA 1286), Université de Bordeaux, Bordeaux, France
| | - Antoine Lefrere
- Fondation FondaMental, Créteil, France
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, France
- INT-UMR7289, CNRS Aix-Marseille Université, Marseille, France
- Université Montpellier, Montpellier, France
| | - Philippe Courtet
- Fondation FondaMental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Emilie Olié
- Fondation FondaMental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU ESPRIT, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France
- Université de Paris, Inserm UMR1266, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
| | - Raymund Schwan
- Fondation FondaMental, Créteil, France
- Université de Lorraine, Centre Psychothérapique de Nancy, Inserm U1254, Nancy, France
| | - Valérie Aubin
- Fondation FondaMental, Créteil, France
- Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Paul Roux
- Fondation FondaMental, Créteil, France
- Centre Hospitalier de Versailles, Service Universitaire de Psychiatrie d'Adulte et d'Addictologie, Le Chesnay, France
- Equipe DisAP-PsyDev, CESP, Université Versailles Saint- Quentin-en-Yvelines - Paris-Saclay, Inserm, Villejuif, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, France
- Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Ludovic Samalin
- Fondation FondaMental, Créteil, France
- Centre Hospitalier et Universitaire, Département de Psychiatrie, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal (UMR 6602), Clermont-Ferrand, France
| | - Emmanuel Haffen
- Fondation FondaMental, Créteil, France
- Service de Psychiatrie de l'Adultre, CIC-1431 INSERM, CHU de Besançon, Laboratoire de Neurosciences, UFC, UBFC, Besançon, France
| | - Frank Bellivier
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| | - Bruno Etain
- Université Paris Cité, INSERM UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie OTeN, Paris, France
- Fondation FondaMental, Créteil, France
- AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, DMU Neurosciences, Hôpital Fernand Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, France
| |
Collapse
|
11
|
Chauhan V, Sibin M, Yadav P, Sharma M. To study childhood trauma in patients with bipolar affective disorder and its association with leucocyte telomere length. Med J Armed Forces India 2024; 80:184-191. [PMID: 38525449 PMCID: PMC10954508 DOI: 10.1016/j.mjafi.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/25/2023] [Indexed: 03/26/2024] Open
Abstract
Background Childhood traumatic (CT) events are more frequent in Bipolar Affective Disorder (BD) than in healthy individuals. As per existing studies, telomere shortening might be associated with psychiatric illnesses and aging-related disorders. One basis could be CT in BD aiding in telomere shortening. Methods 100 BD patients and 100 healthy controls (HC) were matched for age and sex. All the participants were administered Childhood Trauma Questionnaire (CTQ). Subsequently, Quantitative Polymerase Chain Reaction (q-PCR) was performed in order to verify leukocyte telomere length (LTL) for both cases and controls. Results Presence of subtypes of moderate to severe CT among cases revealed emotional abuse in 35%, physical abuse in 16%, and sexual abuse in 15%. BD patients had significantly shorter telomeres in comparison to HC. BD patients with CT had significantly shorter LTL as compared to healthy controls with CT. The association between CT and LTL was not statistically significant in cases as well as in controls. Conclusions Our study revealed presence of CT (moderate to severe) in 46% of BD patients and 12% in age and sex-matched healthy controls. All CT subtypes except sexual abuse were significantly higher among cases than in healthy controls. Mean score of LTL among cases including that with CT was significantly lower than the healthy controls.
Collapse
Affiliation(s)
- V.S. Chauhan
- Professor & Head, Department of Psychiatry, Armed Forces Medical College, Pune, India
| | - M.K. Sibin
- Scientist ‘C’ & Assistant Professor, Department of Biochemistry, Armed Forces Medical College, Pune, India
| | - Prateek Yadav
- Professor, Department of Psychiatry, Armed Forces Medical College, Pune, India
| | - Markanday Sharma
- Graded Specialist (Psychiatry), Military Hospital, Jhansi, India
| |
Collapse
|
12
|
Yang X, Feng F, Gao D, Cai L, Wan C, Zhou X, Zeng Z. Analysis of telomere length and the relationship with neurocognitive functions in euthymic bipolar disorder: A cross-sectional pilot study. J Affect Disord 2024; 347:630-634. [PMID: 38065483 DOI: 10.1016/j.jad.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Telomere shortening has been considered a potential biological marker related to disease susceptibility and aging in psychiatric disorders. However, the relationship between telomere length and bipolar disorder (BD-I and BD-II) is uncertain. Moreover, whether telomere shortening is an independent factor of cognitive impairment in BD patients is still inconclusive. METHODS We explore telomere length and cognitive function in patients with bipolar disorder and the relationship between them. We enrolled three groups (35 patients with euthymic BD-I, 18 with euthymic BD-II, and 38 healthy controls). Telomere length was measured by fluorescent quantitative polymerase chain reaction (q-PCR), and cognitive function was evaluated by the MATRICS Consensus Cognitive Battery (MCCB). SPSS 24.0 was used for statistical analysis. RESULTS The telomere length of euthymic patients with BD-I and BD-II was shorter than that of healthy controls (F = 8.228, P = 0.001, η2 = 0.176). Telomere length was not significantly different between BD-I and BD-II. Compared to HCs, poor performance was detected in attention and vigilance in BD-I patients (F = 3.473, P = 0.036). Working memory was positively correlated with telomere length in BD-II patients (Beta = 0.5, P = 0.041, Adjusted R2 = 0.2). CONCLUSIONS The current study provided evidence of shortened telomere length in euthymic BD patients, indicating that telomere shortening might be a promising biomarker of susceptibility to bipolar disorder. The telomere length predicted the working memory in BD-II patients. Further studies are needed to clarify the role of accelerated aging on cognitive functioning in a young group of patients with BD.
Collapse
Affiliation(s)
- Xi Yang
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China.
| | - Fei Feng
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Dailin Gao
- The Second People's Hospital of Futian District Shenzhen, Shenzhen, China
| | - Luyao Cai
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Chao Wan
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Xudong Zhou
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Zhiwen Zeng
- Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| |
Collapse
|
13
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
14
|
Diniz BS, Seitz-Holland J, Sehgal R, Kasamoto J, Higgins-Chen AT, Lenze E. Geroscience-Centric Perspective for Geriatric Psychiatry: Integrating Aging Biology With Geriatric Mental Health Research. Am J Geriatr Psychiatry 2024; 32:1-16. [PMID: 37845116 PMCID: PMC10841054 DOI: 10.1016/j.jagp.2023.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023]
Abstract
The geroscience hypothesis asserts that physiological aging is caused by a small number of biological pathways. Despite the explosion of geroscience research over the past couple of decades, the research on how serious mental illnesses (SMI) affects the biological aging processes is still in its infancy. In this review, we aim to provide a critical appraisal of the emerging literature focusing on how we measure biological aging systematically, and in the brain and how SMIs affect biological aging measures in older adults. We will also review recent developments in the field of cellular senescence and potential targets for interventions for SMIs in older adults, based on the geroscience hypothesis.
Collapse
Affiliation(s)
- Breno S Diniz
- UConn Center on Aging & Department of Psychiatry (BSD), School of Medicine, University of Connecticut Health Center, Farmington, CT.
| | - Johanna Seitz-Holland
- Department of Psychiatry (JSH), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Department of Psychiatry (JSH), Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Raghav Sehgal
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Jessica Kasamoto
- Program in Computational Biology and Bioinformatics (RS, JK), Yale University, New Haven, CT
| | - Albert T Higgins-Chen
- Department of Psychiatry (ATHC), Yale University School of Medicine, New Haven, CT; Department of Pathology (ATHC), Yale University School of Medicine, New Haven, CT
| | - Eric Lenze
- Department of Psychiatry (EL), School of Medicine, Washington University at St. Louis, St. Louis, MO
| |
Collapse
|
15
|
Mlakar V, Birkenæs V, Elvsaashagen T, Ormerod MBEG, Quintana DS, Ueland T, Melle I, Lagerberg TV, Djurovic S, Martin-Ruiz C, Steen NE, Andreassen OA, Aas M. Telomere length and verbal learning in bipolar disorders. J Affect Disord 2023; 339:555-560. [PMID: 37459977 DOI: 10.1016/j.jad.2023.07.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
INTRODUCTION Recent studies indicate accelerated ageing processes, shorter telomere length and poorer cognitive functioning in patients with bipolar disorder. The neurobiology underlying cognitive function in bipolar disorder is yet to be established. We anticipated that accelerated ageing as indicated by shortened telomere length, would be associated with reduced cognitive performance in bipolar disorder, particularly for ageing sensitive functions such as memory and learning. METHODS The study consisted of 647 participants (bipolar disorder [n = 246] and healthy controls [n = 401]). All participants underwent a standardized neuropsychological test battery, including working memory, executive functioning, processing speed, verbal learning, and verbal memory. Leucocyte telomere length was measured via blood and determined by quantitative real-time Polymerase Chain Reaction (qPCR) providing a telomere to single copy ratio (T/S ratio). The T/S ratio was used as an estimate of the mean telomere length of each participant. All analyses were adjusted for medication, Daily Defined Dose (DDD), chronological age, sex, and ethnicity. RESULTS Patients had shorter telomere lengths than healthy controls (Cohen's d = 0.11, p = 0.01). Within patients', a positive association was observed for verbal learning and telomere length (β = 0.14, p = 0.025), along with a trend for verbal memory and telomere length (β = 0.11, p = 0.07). No other associations were observed for telomere length and cognitive functioning in the patient or the control group (p > 0.1). CONCLUSION Our study may suggest poorer brain health in bipolar disorder as indexed by shorter telomere length and reduced learning correlates. However, the role of telomere length on cognitive functioning in bipolar disorder seems limited.
Collapse
Affiliation(s)
- Vid Mlakar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Viktoria Birkenæs
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Torbjørn Elvsaashagen
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Monica B E G Ormerod
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Daniel S Quintana
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ingrid Melle
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Trine V Lagerberg
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Srdjan Djurovic
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Carmen Martin-Ruiz
- BioScreening Core Facility-CAV, Ageing Research Laboratories, Newcastle University, Campus for Ageing and Vitality, UK
| | - Nils Eiel Steen
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Oslo University Hospital, University of Oslo, Norway
| | - Monica Aas
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Dept. of Behavioural Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
16
|
Mutz J, Lewis CM. Telomere Length Associations With Clinical Diagnosis, Age, and Polygenic Risk Scores for Anxiety Disorder, Depression, and Bipolar Disorder. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:1012-1020. [PMID: 37881560 PMCID: PMC10593885 DOI: 10.1016/j.bpsgos.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022] Open
Abstract
Background Accelerated biological aging might contribute to the lower life expectancy of individuals with mental disorders. The aim of this study was to characterize telomere length, a biological hallmark of aging, in individuals with mental disorders. Methods The UK Biobank is a multicenter community-based observational study that recruited >500,000 middle-aged and older adults. Average leukocyte telomere length (telomere repeat copy number/single-copy gene ratio) was measured using quantitative polymerase chain reaction. Polygenic risk scores (PRSs) were calculated for individuals of European ancestry. We estimated differences in telomere length between individuals with anxiety disorder, depression, or bipolar disorder and people without mental disorders and examined associations with psychotropic medication use, age, and PRSs for these 3 disorders. Results The analyses included up to 308,725 participants. Individuals with depression had shorter telomeres than people without mental disorders (β = -0.011, 95% CI, -0.019 to -0.004, Bonferroni-corrected p = .027). Associations between bipolar disorder and telomere length differed by lithium use. There was limited evidence that individuals with an anxiety disorder had shorter telomeres. There was no evidence that associations between age and telomere length differed between individuals with and without these disorders. PRSs for depression, but not anxiety disorder or bipolar disorder, were associated with shorter telomeres (β = -0.006, 95% CI, -0.010 to -0.003, Bonferroni-corrected p = .001). Conclusions Differences in telomere length were observed primarily for individuals with depression or bipolar disorder and in individuals with a higher PRS for depression. There was no evidence that the association between age and telomere length differed between individuals with and without an anxiety disorder, depression, or bipolar disorder.
Collapse
Affiliation(s)
- Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Medical and Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
17
|
Lu L, Zeng H, Wan B, Sun M. Leukocyte telomere length and bipolar disorder risk: evidence from Mendelian randomization analysis. PeerJ 2023; 11:e15129. [PMID: 37020849 PMCID: PMC10069421 DOI: 10.7717/peerj.15129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/04/2023] [Indexed: 04/03/2023] Open
Abstract
Objective
We aim to test whether leukocyte telomere length (LTL) is causally associated with the risk of bipolar disorder (BD) using the Mendelian randomization (MR) method.
Methods
Results of a genome-wide association study (GWAS) conducted with 472,174 individuals of European descent were used to screen for single-nucleotide polymorphisms (SNPs) related with LTL traits. Summary-level data for BD (7,647 cases and 27,303 controls) were obtained from UK Biobank. An inverse-variance-weighted (IVW) method was employed as the primary MR analysis. Sensitivity analyses were conducted via MR-Egger, maximum likelihood, MR-pleiotropy residual sum outlier (MR-PRESSO), and MR-robust adjusted profile score (MR-RAPS) methods. Finally, the MR Steiger test was utilized to validate the hypothesized relationship between exposure and outcome.
Results
Two-sample MR analysis revealed inverse relationships between genetically predicted LTL and BD risk (IVW OR [odds ratio] = 0.800, 95% CI [0.647–0.989] P = 0.039). Genetically predicted LTL exhibits a consistent connection with BD across five MR methods. Sensitivity analyses showed that the genetically determined effect of LTL on BD was stable and reliable. Furthermore, the MR Steiger test demonstrated that LTL was causal for BD rather than the opposite (P < 0.001).
Conclusion
Our findings show that genetically determined LTL reduces the risk of BD. More research is required to clarify the mechanisms underlying this apparent causal connection. In addition, these findings may be useful for developing strategies for the prevention and treatment of BD.
Collapse
Affiliation(s)
- Likui Lu
- The First Affiliated Hospital of Soochow University, Institute for Fetology, Suzhou, Jiangsu, China
| | - Hongtao Zeng
- The First Affiliated Hospital of Soochow University, Institute for Fetology, Suzhou, Jiangsu, China
| | - Bangbei Wan
- Hainan Women and Children’s Medical Center, Reproductive Medical Center, Haikou, Hainan, China
- Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Department of Urology, Haikou, Hainan, China
| | - Miao Sun
- The First Affiliated Hospital of Soochow University, Institute for Fetology, Suzhou, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
18
|
Spano L, Etain B, Laplanche JL, Leboyer M, Gard S, Bellivier F, Marie-Claire C. Telomere length and mitochondrial DNA copy number in bipolar disorder: A sibling study. World J Biol Psychiatry 2022; 24:449-456. [PMID: 36193690 DOI: 10.1080/15622975.2022.2131907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES An accelerated cellular ageing has been observed in bipolar disorder (BD) using biomarkers such as telomere length (TL) and mitochondrial DNA copy number (mtDNAcn). Several risk factors might drive premature ageing in individuals with BD, including a familial predisposition. This study compared TL and mtDNAcn between individuals with BD and their (un)-affected siblings, and explored factors that may explain proband-sibling differences. METHODS Sixty individuals with BD and seventy-four siblings (34 affected with BD or mood disorders and 40 unaffected) were included. Quantitative polymerase chain reaction (qPCR) was used to measure TL and mtDNAcn from peripheral blood genomic DNA. RESULTS TL and mtDNAcn did not significantly differ between probands and their siblings, whatever these latter were affected or not with mood disorders. However, the correlation plots of TL or mtDNAcn in proband-sibling pairs suggested that some pairs were discordant. The within proband-sibling pairs differences for TL and mtDNAcn were not explained by differences in all tested factors. CONCLUSIONS This study shows that probands with BD and their siblings are concordant for TL and mtDNAcn suggesting that they may share some environmental or genetic determinants of these two biomarkers of cellular ageing.
Collapse
Affiliation(s)
- Luana Spano
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| | - Bruno Etain
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France.,Fondation Fondamental, Créteil, France
| | - Jean-Louis Laplanche
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Département de Biochimie et Biologie Moléculaire, DMU BioGeM, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Marion Leboyer
- Fondation Fondamental, Créteil, France.,Université Paris Est Créteil, INSERM U955, IMRB, Translational Neuro-Psychiatry, Créteil, France.,AP-HP, Hôpitaux Universitaires Henri Mondor, Département Médico-Universitaire de Psychiatrie et d'Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Créteil, France
| | - Sébastien Gard
- Fondation Fondamental, Créteil, France.,Pôle de Psychiatrie Générale et Universitaire, Centre Hospitalier Charles Perrens, Bordeaux, France
| | - Frank Bellivier
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France.,Département de Psychiatrie et de Médecine Addictologique, Hôpitaux Lariboisière-Fernand Widal, GHU APHP.Nord - Université de Paris, Paris, France
| | - Cynthia Marie-Claire
- Université Paris Cité, Inserm, Optimisation Thérapeutique en Neuropsychopharmacologie, Paris, France
| |
Collapse
|
19
|
Squassina A, Meloni A, Congiu D, Bosganas P, Patrinos GP, Lin R, Turecki G, Severino G, Ardau R, Chillotti C, Pisanu C. Analysis on in vitro effect of lithium on telomere length in lymphoblastoid cell lines from bipolar disorder patients with different clinical response to long-term lithium treatment. Hum Genomics 2022; 16:45. [PMID: 36253798 PMCID: PMC9575289 DOI: 10.1186/s40246-022-00418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background It has been suggested that bipolar disorder (BD) is associated with clinical and biological features of accelerated aging. In our previous studies, we showed that long-term lithium treatment was correlated with longer leukocyte telomere length (LTL) in BD patients. A recent study explored the role of TL in BD using patients-derived lymphoblastoid cell lines (LCLs), showing that baseline TL was shorter in BD compared to controls and that lithium in vitro increased TL but only in BD. Here, we used the same cell system (LCLs) to explore if a 7-day treatment protocol with lithium chloride (LiCl) 1 mM was able to highlight differences in TL between BD patients clinically responders (Li-R; n = 15) or non-responders (Li-NR; n = 15) to lithium, and if BD differed from non-psychiatric controls (HC; n = 15).
Results There was no difference in TL between BD patients and HC. Moreover, LiCl did not influence TL in the overall sample, and there was no difference between diagnostic or clinical response groups. Likewise, LiCl did not affect TL in neural precursor cells from healthy donors. Conclusions Our findings suggest that a 7-day lithium treatment protocol and the use of LCLs might not represent a suitable approach to deepen our understanding on the role of altered telomere dynamics in BD as previously suggested by studies in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00418-8.
Collapse
Affiliation(s)
- Alessio Squassina
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy.
| | - Anna Meloni
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy
| | - Donatella Congiu
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy
| | - Panagiotis Bosganas
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, School of Health Sciences, Department of Pharmacy, University of Patras, Patras, Greece.,College of Medicine and Health Sciences, Department of Genetics and Genomics, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Rixing Lin
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Giovanni Severino
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- Laboratory of Pharmacogenomics, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Sp 8 Sestu-Monserrato, Km 0.700, Mosnerrato, 09042, Cagliari, Italy.
| |
Collapse
|
20
|
Lima CNC, Suchting R, Scaini G, Cuellar VA, Favero-Campbell AD, Walss-Bass C, Soares JC, Quevedo J, Fries GR. Epigenetic GrimAge acceleration and cognitive impairment in bipolar disorder. Eur Neuropsychopharmacol 2022; 62:10-21. [PMID: 35810614 PMCID: PMC9427697 DOI: 10.1016/j.euroneuro.2022.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/20/2022]
Abstract
Bipolar disorder (BD) has been previously associated with clinical signs of premature aging, including accelerated epigenetic aging in blood and brain, and a steeper age-related decline in cognitive function. However, the clinical drivers and cognitive correlates of epigenetic aging in BD are still unknown. We aimed to investigate the relationship between multiple measures of epigenetic aging acceleration with clinical, functioning, and cognitive outcomes in patients with BD and controls. Blood genome-wide DNA methylation levels were measured in BD patients (n = 153) and matched healthy controls (n = 50) with the Infinium MethylationEPIC BeadChip (Illumina). Epigenetic age estimates were calculated using an online tool, including the recently developed lifespan predictor GrimAge, and analyzed with generalized linear models controlling for demographic variables and blood cell proportions. BD was significantly associated with greater GrimAge acceleration (AgeAccelGrim, β=0.197, p = 0.009), and significant group-dependent interactions were found between AgeAccelGrim and blood cell proportions (CD4+ T-lymphocytes, monocytes, granulocytes, and B-cells). Within patients, higher AgeAccelGrim was associated with worse cognitive function in multiple domains (short-term affective memory (β=-0.078, p = 0.030), short-term non-affective memory (β=-0.088, p = 0.018), inhibition (β=0.064, p = 0.046), and problem solving (β=-0.067, p = 0.034)), age of first diagnosis with any mood disorder (β=-0.076, p = 0.039) or BD (β=-0.102, p = 0.016), as well as with current non-smoking status (β=-0.392, p < 0.001). Overall, our findings support the contribution of epigenetic factors to the aging-related cognitive decline and premature mortality reported in BD patients, with an important driving effect of smoking in this population.
Collapse
Affiliation(s)
- Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Robert Suchting
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Valeria A Cuellar
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX
| | - Jair C Soares
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX; Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX.
| |
Collapse
|
21
|
Spano L, Hennion V, Marie-Claire C, Bellivier F, Scott J, Etain B. Associations between circadian misalignment and telomere length in BD: an actigraphy study. Int J Bipolar Disord 2022; 10:14. [PMID: 35619042 PMCID: PMC9135941 DOI: 10.1186/s40345-022-00260-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Life expectancy is significantly decreased in bipolar disorder (BD). This is associated with accelerated cellular aging which can be estimated by telomere length (TL). However, specific determinants of shorter TL in BD are under-explored. This study examines whether circadian misalignment (i.e. mismatch between preferred and actual phase of circadian activity rhythms) is associated with shorter TL in BD. METHODS Euthymic individuals with BD (n = 101) undertook 21 consecutive days of actigraphy recording and completed the Composite Scale of Morningness (CSM) to assess phase preference for activities (chronotype). Polymerase chain reaction was used to measure TL in blood. Cluster analysis identified circadian aligned/misaligned subgroups as defined by preferred (CSM score) and actual phases of activity (actigraphically determined onset of active and inactive periods). We tested for any associations between TL and clusters, with adjustments for between-cluster differences in socio-demographic and illness factors. RESULTS We identified three clusters: an "Aligned Morning" cluster (n = 31) with preferred and actual timing of activity in the morning, an "Aligned Evening" cluster (n = 37) with preferred and actual timing of activity in the evening and a "Misaligned" cluster (n = 32) with an evening chronotype, but an earlier objective onset of active periods. After adjustment for confounders, we found that TL was significantly associated with circadian misalignment and older age. CONCLUSIONS Circadian misalignment may partly explain shorter TL in BD and could contribute to accelerated aging in these individuals.
Collapse
Affiliation(s)
- Luana Spano
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France
| | - Vincent Hennion
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France.,Université de Paris, Paris, France.,DMU Neurosciences, Département de Psychiatrie Et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, Paris, France
| | - Cynthia Marie-Claire
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France
| | - Frank Bellivier
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France.,Université de Paris, Paris, France.,DMU Neurosciences, Département de Psychiatrie Et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, Paris, France
| | - Jan Scott
- Université de Paris, Paris, France.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Bruno Etain
- INSERM UMR-S 1144, Optimisation Thérapeutique en Neurospsychopharmacologie, OTeN, Université de Paris, 75006, Paris, France. .,Université de Paris, Paris, France. .,DMU Neurosciences, Département de Psychiatrie Et de Médecine Addictologique, AP-HP.Nord, GH Saint-Louis-Lariboisière-F. Widal, Paris, France. .,Département de Psychiatrie et de Médecine Addictologique, Centre Expert Troubles Bipolaires, Hôpital Fernand Widal, 200, rue du Faubourg Saint Denis, 75010, Paris Cedex, France.
| |
Collapse
|
22
|
Gogoleva I, Gromova O, Torshin I, Grishina T, Pronin A. A systematic analysis of neurobiological roles of lithium. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:17-23. [DOI: 10.17116/jnevro202212211117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Decreased leucocyte telomere length in male patients with chronic bipolar disorder: lack of effect of long-term lithium treatment. Acta Neuropsychiatr 2021; 33:299-306. [PMID: 34369336 DOI: 10.1017/neu.2021.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) may be connected with accelerated aging, the marker of this can be shorter telomere length (TL). Some data suggest that lithium may exert a protective effect against telomere shortening. The study aimed to compare the TL between patients with BD and control subjects. The effect of long-term lithium treatment was also assessed. METHODS The study group comprised 41 patients with BD, including 29 patients treated longitudinally with lithium (mean 16.5 years) and 20 healthy people. TL was assessed by the quantitative polymerase chain reaction (qPCR). RESULTS In the control group, the TL was significantly longer in males than in females. Male bipolar patients had significantly shorter TL compared with the control male group. In bipolar patients, there was no correlation between TL and duration of treatment. The TL was negatively correlated with age in male bipolar patients. CONCLUSIONS The study did not confirm the lithium effect on TL in bipolar patients. TL showed gender differences, being shorter in BD males, compared to control males, and longer in healthy males, compared to control females.
Collapse
|
24
|
Pisanu C, Vitali E, Meloni A, Congiu D, Severino G, Ardau R, Chillotti C, Trabucchi L, Bortolomasi M, Gennarelli M, Minelli A, Squassina A. Investigating the Role of Leukocyte Telomere Length in Treatment-Resistant Depression and in Response to Electroconvulsive Therapy. J Pers Med 2021; 11:jpm11111100. [PMID: 34834452 PMCID: PMC8622097 DOI: 10.3390/jpm11111100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Psychiatric disorders seem to be characterized by premature cell senescence. However, controversial results have also been reported. In addition, the relationship between accelerated aging and treatment-resistance has scarcely been investigated. In the current study, we measured leukocyte telomere length (LTL) in 148 patients with treatment-resistant depression (TRD, 125 with major depressive disorder, MDD, and 23 with bipolar disorder, BD) treated with electroconvulsive therapy (ECT) and analyzed whether LTL was associated with different response profiles. We also compared LTL between patients with TRD and 335 non-psychiatric controls. For 107 patients for which genome-wide association data were available, we evaluated whether a significant overlap among genetic variants or genes associated with LTL and with response to ECT could be observed. LTL was negatively correlated with age (Spearman’s correlation coefficient = −0.25, p < 0.0001) and significantly shorter in patients with treatment-resistant MDD (Quade’s F = 35.18, p < 0.0001) or BD (Quade’s F = 20.84, p < 0.0001) compared to controls. Conversely, baseline LTL was not associated with response to ECT or remission. We did not detect any significant overlap between genetic variants or genes associated with LTL and response to ECT. Our results support previous findings suggesting premature cell senescence in patients with severe psychiatric disorders and suggest that LTL could not be a predictive biomarker of response to ECT.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Erika Vitali
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Anna Meloni
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Donatella Congiu
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Giovanni Severino
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, 09123 Cagliari, Italy; (R.A.); (C.C.)
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, 09123 Cagliari, Italy; (R.A.); (C.C.)
| | - Luigi Trabucchi
- Psychiatric Hospital “Villa Santa Chiara”, 37142 Verona, Italy; (L.T.); (M.B.)
| | - Marco Bortolomasi
- Psychiatric Hospital “Villa Santa Chiara”, 37142 Verona, Italy; (L.T.); (M.B.)
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.V.); (M.G.); (A.M.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessio Squassina
- Department of Biomedical Science, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Cagliari, Italy; (C.P.); (A.M.); (D.C.); (G.S.)
- Correspondence: ; Tel.: +39-070-675-4323
| |
Collapse
|
25
|
Mini-review: The anti-aging effects of lithium in bipolar disorder. Neurosci Lett 2021; 759:136051. [PMID: 34139318 DOI: 10.1016/j.neulet.2021.136051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
The medical use of lithium has grown since its initial introduction in the 1800s as a treatment for gout. Today, the divalent cation remains as the pharmacological gold standard in treatment of bipolar disorder (BD) with strong mood stabilizing effects. Lithium has demonstrated efficacy in the treatment of acute affective episodes, in the reduction of affective episode recurrence, and in significantly decreasing the risk of suicide in patients. BD has been consistently associated with clinical signs of accelerated aging, including increased rates of age-related diseases such as cardiovascular diseases, malignancies, and diabetes mellitus. This clinical scenario parallels accelerated aging mechanisms observed on a molecular basis, with studies reporting shortened telomeres, increased oxidative stress, and accelerated epigenetic aging in patients with BD compared to controls. Lithium has proved useful as a potential agent in slowing down this accelerated aging process in BD, potentially reversing effects induced by the disorder. This mini-review summarizes findings of anti-aging mechanisms associated with lithium use and provides a discussion of the clinical implications and perspectives of this evolving field. Despite many promising results, more studies are warranted in order to elucidate the exact mechanism by which lithium may act as an anti-aging agent and the extent to which these mechanisms are relevant to its mood stabilizing properties in BD.
Collapse
|
26
|
Sleem A, El-Mallakh RS. Advances in the psychopharmacotherapy of bipolar disorder type I. Expert Opin Pharmacother 2021; 22:1267-1290. [PMID: 33612040 DOI: 10.1080/14656566.2021.1893306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Research into the pharmacologic management of bipolar type I illness continues to progress. AREAS COVERED Randomized clinical trials performed with type I bipolar disorder in the years 2015 to August 2020 are reviewed. There are new indications for the use of cariprazine, for bipolar mania and depression, and a long-acting injectable formulation of aripiprazole has also been approved for relapse prevention in bipolar illness. Most of the randomized clinical trials are effectiveness studies. EXPERT OPINION Over the 20 years from 1997 through 2016, the use of lithium and other mood stabilizers has declined by 50%, while the use of both second-generation antipsychotics (SGAs) and antidepressants has increased considerably. Over the same time period (1990-2017), disability-adjusted life years (DALYs) increased by 54.4%, from 6.02 million in 1990 to 9.29 million in 2017 which is greater than the 47.74% increase in incidence of the disease, suggesting that the changes in prescribing patterns have not been helpful for our patients. Furthermore, recent effectiveness studies continue to confirm the superiority of lithium and other mood stabilizers in the management of bipolar illness for both psychiatric and medical outcomes, reaffirming their role as foundational treatments in the management of type I bipolar disorder. Clinicians need to reassess their prescribing habits.
Collapse
Affiliation(s)
- Ahmad Sleem
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
27
|
Squassina A, Manchia M, Pisanu C, Ardau R, Arzedi C, Bocchetta A, Caria P, Cocco C, Congiu D, Cossu E, Dettori T, Frau DV, Garzilli M, Manca E, Meloni A, Montis MA, Mura A, Nieddu M, Noli B, Paribello P, Pinna F, Robledo R, Severino G, Sogos V, Del Zompo M, Ferri GL, Chillotti C, Vanni R, Carpiniello B. Telomere attrition and inflammatory load in severe psychiatric disorders and in response to psychotropic medications. Neuropsychopharmacology 2020; 45:2229-2238. [PMID: 32919410 PMCID: PMC7784910 DOI: 10.1038/s41386-020-00844-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Individuals with severe psychiatric disorders have a reduced life expectancy compared to the general population. At the biological level, patients with these disorders present features that suggest the involvement of accelerated aging, such as increased circulating inflammatory markers and shorter telomere length (TL). To date, the role of the interplay between inflammation and telomere dynamics in the pathophysiology of severe psychiatric disorders has been scarcely investigated. In this study we measured T-lymphocytes TL with quantitative fluorescent in situ hybridization (Q-FISH) and plasma levels of inflammatory markers in a cohort comprised of 40 patients with bipolar disorder (BD), 41 with schizophrenia (SZ), 37 with major depressive disorder (MDD), and 36 non-psychiatric controls (NPC). TL was shorter in SZ and in MDD compared to NPC, while it was longer in BD (model F6, 137 = 20.128, p = 8.73 × 10-17, effect of diagnosis, F3 = 31.870; p = 1.08 × 10-15). There was no effect of the different classes of psychotropic medications, while duration of treatment with mood stabilizers was associated with longer TL (Partial correlation controlled for age and BMI: correlation coefficient = 0.451; p = 0.001). Levels of high-sensitivity C-Reactive Protein (hsCRP) were higher in SZ compared to NPC (adjusted p = 0.027), and inversely correlated with TL in the whole sample (r = -0.180; p = 0.042). Compared to NPC, patients with treatment resistant (TR) SZ had shorter TL (p = 0.001), while patients with TR MDD had higher levels of tumor necrosis factor-α (TNFα) compared to NPC (p = 0.028) and to non-TR (p = 0.039). Comorbidity with cardio-metabolic disorders did not influence the observed differences in TL, hsCRP, and TNFα among the diagnostic groups. Our study suggests that patients with severe psychiatric disorders present reduced TL and increased inflammation.
Collapse
Affiliation(s)
- Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| | - Mirko Manchia
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Raffaella Ardau
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Carlo Arzedi
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Alberto Bocchetta
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Donatella Congiu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Eleonora Cossu
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Daniela Virginia Frau
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mario Garzilli
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Elias Manca
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Anna Meloni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Maria Antonietta Montis
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Andrea Mura
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mariella Nieddu
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Barbara Noli
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Pasquale Paribello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Giovanni Severino
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Monserrato, Cagliari, Italy
| | - Maria Del Zompo
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gian Luca Ferri
- Department of Biomedical Sciences, NEF Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Roberta Vanni
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Monserrato, Cagliari, Italy
| | - Bernardo Carpiniello
- Unit of Psychiatry, Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Cagliari, Italy
- Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| |
Collapse
|
28
|
Lundberg M, Millischer V, Backlund L, Martinsson L, Stenvinkel P, Sellgren CM, Lavebratt C, Schalling M. Lithium and the Interplay Between Telomeres and Mitochondria in Bipolar Disorder. Front Psychiatry 2020; 11:586083. [PMID: 33132941 PMCID: PMC7553080 DOI: 10.3389/fpsyt.2020.586083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Bipolar disorder is a severe psychiatric disorder which affects more than 1% of the world's population and is a leading cause of disability among young people. For the past 50 years, lithium has been the drug of choice for maintenance treatment of bipolar disorder due to its potent ability to prevent both manic and depressive episodes as well as suicide. However, though lithium has been associated with a multitude of effects within different cellular pathways and biological systems, its specific mechanism of action in stabilizing mood remains largely elusive. Mitochondrial dysfunction and telomere shortening have been implicated in both the pathophysiology of bipolar disorder and as targets of lithium treatment. Interestingly, it has in recent years become clear that these phenomena are intimately linked, partly through reactive oxygen species signaling and the subcellular translocation and non-canonical actions of telomerase reverse transcriptase. In this review, we integrate the current understanding of mitochondrial dysfunction, oxidative stress and telomere shortening in bipolar disorder with documented effects of lithium. Moreover, we propose that lithium's mechanism of action is intimately connected with the interdependent regulation of mitochondrial bioenergetics and telomere maintenance.
Collapse
Affiliation(s)
- Martin Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vincent Millischer
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lena Backlund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Martinsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Healthcare Services, Region Stockholm, Stockholm, Sweden
| | - Peter Stenvinkel
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Carl M Sellgren
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Healthcare Services, Region Stockholm, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Catharina Lavebratt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|