1
|
Steinmeyer J, Flechtenmacher J. Drug-induced Myopathies. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2023; 161:175-181. [PMID: 34320661 DOI: 10.1055/a-1488-6912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Differential diagnosis of muscle pain and weakness is extensive, including neurological, vertebral, arthrogenic, vascular, traumatic, immunological, endocrine, genetic and infectious aetiologies, as well as medication or toxin-related causes. Muscles are highly sensitive to a large number of drugs, especially with high doses. Although many drug classes can cause toxic myopathy, a significant number of cases are caused by lipid-lowering drugs, long-term use of corticosteroids, and, most often, alcohol misuse. Some drug interactions, e.g. those that are metabolised via the enzyme CYP3A4, can increase the serum levels of the drugs and drug-induced toxicity. A careful history of patient's drug and alcohol consumption is therefore vital. Clinical symptoms depend on the drug, dosage and patient's sensitivity. They can vary from asymptomatic increase in serum levels of creatine kinase, mild myalgia and cramps to muscle weakness, rhabdomyolysis, kidney failure and even death. The pathogenesis is often only partially known and multifactorial. Toxic myopathy is often reversible once the drug is discontinued, alternative drug therapy is started or a different dosage regimen is chosen. Complications such as acute kidney failure must be avoided, and analgesic therapy may be indicated.
Collapse
Affiliation(s)
- Jürgen Steinmeyer
- Laboratory for Experimental Orthopaedics, Dept. of Orthopaedics, Justus Liebig University Giessen, Giessen, Germany
| | - Johannes Flechtenmacher
- Professional Association for Orthopaedic and Trauma Surgery (BVOU), Berlin, Germany
- Ortho-Zentrum, Orthopaedic Group Practice at Ludwigsplatz, Karlsruhe, Germany
| |
Collapse
|
2
|
Božina T, Ganoci L, Karačić E, Šimičević L, Vrkić-Kirhmajer M, Klarica-Domjanović I, Križ T, Sertić Z, Božina N. ABCG2 and SLCO1B1 gene polymorphisms in the Croatian population. Ann Hum Biol 2022; 49:323-331. [PMID: 36382878 DOI: 10.1080/03014460.2022.2140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Organic anion-transporting polypeptide 1B1 (OATP1B1) and the ATP-binding cassette subfamily G member 2, ABCG2, are important transporters involved in the transport of endogenous substrates and xenobiotics, including drugs. Genetic polymorphisms of these transporters have effect on transporter activity. There is significant interethnic variability in the frequency of allele variants. AIM To determined allele and genotype frequencies of ABCG2 and SLCO1B1 genes in Croatian populations of European descent. SUBJECTS AND METHODS A total of 905 subjects (482 women) were included. Genotyping for ABCG2 c.421C > A (rs2231142) and for SLCO1B1 c.521T > C (rs4149056), was performed by real-time polymerase chain reaction (PCR) using TaqMan® DME Genotyping Assays. RESULTS For ABCG2 c.421C > A, the frequency of CC, CA and AA genotypes was 81.4%, 17.8% and 0.8% respectively. The frequency of variant ABCG2 421 A allele was 9.7%. For SLCO1B1 c.521T > C, the frequency of TT, TC and CC genotypes was 61.7%, 34.8% and 3.5% respectively. The frequency of variant SLCO1B1 521 C allele was 20.9%. CONCLUSION The frequency of the ABCG2 and SLCO1B1 allelic variants and genotypes in the Croatian population is in accordance with other European populations. Pharmacogenetic analysis can serve to individualise drug therapy and minimise the risk of developing adverse drug reactions.
Collapse
Affiliation(s)
- Tamara Božina
- Department of Medical Chemistry, Biochemistry, and Clinical Chemistry, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ena Karačić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Livija Šimičević
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Majda Vrkić-Kirhmajer
- Department of Cardiovascular Diseases Zagreb, University of Zagreb School of Medicine, University Hospital Centre Zagreb, Croatia
| | | | - Tena Križ
- Department of Ophthalmology, University Hospital Centre "Sestre milosrdnice", Zagreb, Croatia
| | - Zrinka Sertić
- Department of Emergency Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nada Božina
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
3
|
Wang CW, Preclaro IAC, Lin WH, Chung WH. An Updated Review of Genetic Associations With Severe Adverse Drug Reactions: Translation and Implementation of Pharmacogenomic Testing in Clinical Practice. Front Pharmacol 2022; 13:886377. [PMID: 35548363 PMCID: PMC9081981 DOI: 10.3389/fphar.2022.886377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADR) remain the major problems in healthcare. Most severe ADR are unpredictable, dose-independent and termed as type B idiosyncratic reactions. Recent pharmacogenomic studies have demonstrated the strong associations between severe ADR and genetic markers, including specific HLA alleles (e.g., HLA-B*15:02/HLA-B*57:01/HLA-A*31:01 for carbamazepine-induced severe cutaneous adverse drug reactions [SCAR], HLA-B*58:01 for allopurinol-SCAR, HLA-B*57:01 for abacavir-hypersensitivity, HLA-B*13:01 for dapsone/co-trimoxazole-induced SCAR, and HLA-A*33:01 for terbinafine-induced liver injury), drug metabolism enzymes (such as CYP2C9*3 for phenytoin-induced SCAR and missense variant of TPMT/NUDT15 for thiopurine-induced leukopenia), drug transporters (e.g., SLCO1B1 polymorphism for statin-induced myopathy), and T cell receptors (Sulfanilamide binding into the CDR3/Vα of the TCR 1.3). This mini review article aims to summarize the current knowledge of pharmacogenomics of severe ADR, and the potentially clinical use of these genetic markers for avoidance of ADR.
Collapse
Affiliation(s)
- Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
| | - Ivan Arni C Preclaro
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan
| | - Wei-Hsiang Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei and Keelung, Taiwan.,Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Cital and Chang Gung University, Taoyuan, Taiwan.,Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China.,Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan.,Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To collect evidence on statin pharmacogenomics, and review what is known in this field for familial hypercholesterolemia (FH) patients. RECENT FINDINGS There are well-known associations between specific single nucleotide polymorphisms involved in statin transport and metabolism and either adverse effects or altered lipid-lowering efficacy. However, the applicability of this knowledge is uncertain, especially in high-risk populations. There are alternative approaches to study plasma concentrations of statins and new insights on why some association studies fail to be replicated. SUMMARY Statin therapy recommendations are not always followed in primary and secondary prevention and, even when followed, patients often fail to reach therapeutic target values. Considering the stringent 2019 European Atherosclerosis Society and European Society of Cardiology recommended target lipid levels, as well as the persistently high cost for alternative lipid-lowering therapies such as PCSK9 inhibitors, the variability in low-density lipoprotein cholesterol reductions on statin therapy is still an important factor that needs to be addressed to ensure better cardiovascular disease risk management, especially for FH patients, who have not been well studied historically in this context.
Collapse
Affiliation(s)
- Joana Rita Chora
- Instituto Nacional de Saúde Doutor Ricardo Jorge
- Biosystems and Integrative Sciences Institute, Lisbon, Portugal
| | - Mafalda Bourbon
- Instituto Nacional de Saúde Doutor Ricardo Jorge
- Biosystems and Integrative Sciences Institute, Lisbon, Portugal
| |
Collapse
|