1
|
Di Francia R, Crisci S, De Monaco A, Cafiero C, Re A, Iaccarino G, De Filippi R, Frigeri F, Corazzelli G, Micera A, Pinto A. Response and Toxicity to Cytarabine Therapy in Leukemia and Lymphoma: From Dose Puzzle to Pharmacogenomic Biomarkers. Cancers (Basel) 2021; 13:cancers13050966. [PMID: 33669053 PMCID: PMC7956511 DOI: 10.3390/cancers13050966] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary In this review, the authors propose a crosswise examination of cytarabine-related issues ranging from the spectrum of clinical activity and severe toxicities, through updated cellular pharmacology and drug formulations, to the genetic variants associated with drug-induced phenotypes. Cytarabine (cytosine arabinoside; Ara-C) in multiagent chemotherapy regimens is often used for leukemia or lymphoma treatments, as well as neoplastic meningitis. Chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. The individual variability in clinical response to Leukemia & Lymphoma treatments among patients appears to be associated with intracellular accumulation of Ara-CTP due to genetic variants related to metabolic enzymes. The review provides exhaustive information on the effects of Ara-C-based therapies, the adverse drug reaction will also be provided including bone pain, ocular toxicity (corneal pain, keratoconjunctivitis, and blurred vision), maculopapular rash, and occasional chest pain. Evidence for predicting the response to cytarabine-based treatments will be highlighted, pointing at their significant impact on the routine management of blood cancers. Abstract Cytarabine is a pyrimidine nucleoside analog, commonly used in multiagent chemotherapy regimens for the treatment of leukemia and lymphoma, as well as for neoplastic meningitis. Ara-C-based chemotherapy regimens can induce a suboptimal clinical outcome in a fraction of patients. Several studies suggest that the individual variability in clinical response to Leukemia & Lymphoma treatments among patients, underlying either Ara-C mechanism resistance or toxicity, appears to be associated with the intracellular accumulation and retention of Ara-CTP due to genetic variants related to metabolic enzymes. Herein, we reported (a) the latest Pharmacogenomics biomarkers associated with the response to cytarabine and (b) the new drug formulations with optimized pharmacokinetics. The purpose of this review is to provide readers with detailed and comprehensive information on the effects of Ara-C-based therapies, from biological to clinical practice, maintaining high the interest of both researcher and clinical hematologist. This review could help clinicians in predicting the response to cytarabine-based treatments.
Collapse
Affiliation(s)
- Raffaele Di Francia
- Italian Association of Pharmacogenomics and Molecular Diagnostics, 60126 Ancona, Italy;
| | - Stefania Crisci
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Angela De Monaco
- Clinical Patology, ASL Napoli 2 Nord, “S.M. delle Grazie Hospital”, 80078 Pozzuoli, Italy;
| | - Concetta Cafiero
- Medical Oncology, S.G. Moscati, Statte, 74010 Taranto, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Agnese Re
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Giancarla Iaccarino
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Rosaria De Filippi
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | | | - Gaetano Corazzelli
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS—Fondazione Bietti, 00184 Rome, Italy
- Correspondence: or (C.C.); (A.M.); Tel.:+39-34-0101-2002 (C.C.); +39-06-4554-1191 (A.M.)
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell transplantation Unit, National Cancer Institute, Fondazione “G. Pascale” IRCCS, 80131 Naples, Italy; (S.C.); (G.I.); (R.D.F.); (G.C.); (A.P.)
| |
Collapse
|
2
|
Nath A, Wang J, Stephanie Huang R. Pharmacogenetics and Pharmacogenomics of Targeted Therapeutics in Chronic Myeloid Leukemia. Mol Diagn Ther 2018; 21:621-631. [PMID: 28698977 DOI: 10.1007/s40291-017-0292-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The advent of targeted therapeutics has greatly improved outcomes of chronic myeloid leukemia (CML) patients. Despite increased efficacy and better clinical responses over cytotoxic chemotherapies, many patients receiving targeted drugs exhibit a poor initial response, develop drug resistance, or undergo relapse after initial success. This inter-individual variation in response has heightened the interest in studying pharmacogenetics and pharmacogenomics (PGx) of cancer drugs. In this review, we discuss the influence of various germline and somatic factors on targeted drug response in CML. Specifically, we examine the role of genetic variants in drug metabolism genes, i.e. CYP3A family genes, and drug transporters, i.e. ABC and SLC family genes. Additionally, we focus on acquired somatic variations in BCR-ABL1, and the potential role played by additional downstream signaling pathways, in conferring resistance to targeted drugs in CML. This review highlights the importance of PGx of targeted therapeutics and its potential application to improving treatment decisions and patient outcomes.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Cytochrome P-450 CYP3A/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Glucuronosyltransferase/genetics
- Humans
- Inactivation, Metabolic/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Organic Cation Transporter 1/genetics
- Pharmacogenetics
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Aritro Nath
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jacqueline Wang
- Biological Sciences Collegiate Division, The University of Chicago, Chicago, IL, USA
| | - R Stephanie Huang
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Patel JN, McLeod HL, Innocenti F. Implications of genome-wide association studies in cancer therapeutics. Br J Clin Pharmacol 2013; 76:370-80. [PMID: 23701381 PMCID: PMC3769665 DOI: 10.1111/bcp.12166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/21/2013] [Indexed: 12/22/2022] Open
Abstract
Genome wide association studies (GWAS) provide an agnostic approach to identifying potential genetic variants associated with disease susceptibility, prognosis of survival and/or predictive of drug response. Although these techniques are costly and interpretation of study results is challenging, they do allow for a more unbiased interrogation of the entire genome, resulting in the discovery of novel genes and understanding of novel biological associations. This review will focus on the implications of GWAS in cancer therapy, in particular germ-line mutations, including findings from major GWAS which have identified predictive genetic loci for clinical outcome and/or toxicity. Lessons and challenges in cancer GWAS are also discussed, including the need for functional analysis and replication, as well as future perspectives for biological and clinical utility. Given the large heterogeneity in response to cancer therapeutics, novel methods of identifying mechanisms and biology of variable drug response and ultimately treatment individualization will be indispensable.
Collapse
Affiliation(s)
- Jai N Patel
- UNC Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC, 27599-7361, USA
| | | | | |
Collapse
|
4
|
Weng L, Zhang L, Peng Y, Huang RS. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy. Pharmacogenomics 2013; 14:315-24. [PMID: 23394393 DOI: 10.2217/pgs.12.213] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the past decade, advances in pharmacogenetics and pharmacogenomics (PGx) have gradually unveiled the genetic basis of interindividual differences in drug responses. A large portion of these advances have been made in the field of anticancer therapy. Currently, the US FDA has updated the package inserts of approximately 30 anticancer agents to include PGx information. Given the complexity of this genetic information (e.g., tumor mutation and gene overexpression, chromosomal translocation and germline variations), as well as the variable level of scientific evidence, the FDA recommendation and potential action needed varies among drugs. In this review, we have highlighted some of these PGx discoveries for their scientific values and utility in improving therapeutic efficacy and reducing side effects. Furthermore, examples are also provided for the role of PGx in new anticancer drug development by revealing novel druggable targets.
Collapse
Affiliation(s)
- Liming Weng
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
5
|
Scalvini A, Ferrari V, Bodei S, Arcangeli G, Consoli F, Spano P, Sigala S. Involvement of target gene polymorphisms in 5-Fluorouracil toxicity: a case report. Pharmacology 2012; 89:99-102. [PMID: 22343422 DOI: 10.1159/000335784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/13/2011] [Indexed: 11/19/2022]
Abstract
Personalized medicine is becoming an important tool in oncology, both in preventing disease and in optimizing the treatment of existing cancers. Here we describe the cases of 2 patients with relevant systemic toxicity following 5-fluorouracil (5-FU) therapy and we study the more frequent polymorphisms in the target genes, in particular: (1) the variability in the number of 28-base repetitions present in the 5'-untranslated sequence of the thymidine synthase gene; (2) the presence of single-nucleotide polymorphisms in the methylene tetrahydrofolate reductase gene, and (3) the presence of mRNA splicing in intron 14 of the hepatic enzyme dihydropyrimidine dehydrogenase. The 5-FU gene profile of our patients strongly suggested that the polymorphisms expressed may contribute to the adverse effects seen during the therapy. To what extent these polymorphisms induced adverse effects cannot be established at present; however, our results strengthen the relevance of the 5-FU-related pharmacogenomic profile to predict the response outcome and the chemotherapy toxicity.
Collapse
Affiliation(s)
- Anna Scalvini
- Division of Oncology, AO Spedali Civili, University of Brescia Medical School, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Godley LA, Cunningham J, Dolan ME, Huang RS, Gurbuxani S, McNerney ME, Larson RA, Leong H, Lussier Y, Onel K, Odenike O, Stock W, White KP, Le Beau MM. An integrated genomic approach to the assessment and treatment of acute myeloid leukemia. Semin Oncol 2011; 38:215-24. [PMID: 21421111 DOI: 10.1053/j.seminoncol.2011.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Traditionally, new scientific advances have been applied quickly to the leukemias based on the ease with which relatively pure samples of malignant cells can be obtained. Currently, our arsenal of approaches used to characterize an individual's acute myeloid leukemia (AML) combines hematopathologic evaluation, flow cytometry, cytogenetic analysis, and molecular studies focused on a few key genes. The advent of high-throughput methods capable of full-genome evaluation presents new options for a revolutionary change in the way we diagnose, characterize, and treat AML. Next-generation DNA sequencing techniques allow full sequencing of a cancer genome or transcriptome, with the hope that this will be affordable for routine clinical care within the decade. Microarray-based testing will define gene and miRNA expression, DNA methylation patterns, chromosomal imbalances, and predisposition to disease and chemosensitivity. The vision for the future entails an integrated and automated approach to these analyses, bringing the possibility of formulating an individualized treatment plan within days of a patient's initial presentation. With these expectations comes the hope that such an approach will lead to decreased toxicities and prolonged survival for patients.
Collapse
Affiliation(s)
- Lucy A Godley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA. lgodley@medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|