1
|
Wang XK, Guo YX, Wang M, Zhang XD, Liu ZY, Wang MS, Luo K, Huang S, Li RF. Identification and validation of candidate clinical signatures of apolipoprotein L isoforms in hepatocellular carcinoma. Sci Rep 2023; 13:20969. [PMID: 38017264 PMCID: PMC10684526 DOI: 10.1038/s41598-023-48366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide with an increasing number of new cases each year. Apolipoprotein (APOL) isoforms have been explored for their associations with HCC.The GSE14520 cohort was used for training data; The Cancer Genome Atlas (TCGA) database was used for validated data. Diagnostic, prognostic significance and mechanisms were explored using these cohorts. Risk score models and nomograms were constructed using prognosis-related isoforms and clinical factors for survival prediction. Oncomine and HCCDB databases were further used for validation of diagnostic, prognostic significance. APOL1, 3, and 6 were differentially expressed in two cohorts (all P ≤ 0.05). APOL1 and APOL6 had diagnostic capacity whereas APOL3 and APOL6 had prognostic capacity in two cohorts (areas under curves [AUCs] > 0.7, P ≤ 0.05). Mechanism studies demonstrated that APOL3 and APOL6 might be involved in humoral chemokine signaling pathways (all P ≤ 0.05). Risk score models and nomograms were constructed and validated for survival prediction of HCC. Moreover, diagnostic values of APOL1 and weak APOL6 were validated in Oncomine database (AUC > 0.700, 0.694); prognostic values of APOL3 and APOL6 were validated in HCCDB database (all P < 0.05). Differentially expressed APOL1 and APOL6 might be diagnostic biomarkers; APOL3 and APOL6 might be prognostic biomarkers of RFS and OS for HCC via chemokine signaling pathways.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Yu-Xiang Guo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Miao Wang
- Department of Gastrointestinal Oncology, Nanyang Second General Hospital, Nanyang, 473009, Henan Province, People's Republic of China
| | - Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
2
|
Shi Q, Lin Y, Huang L, Jin S, Huang R, Zhang L, Song C, Xu L, Zhang S. Elucidating the mechanisms underlying the anti-hyperlipidemic effects of Laportea bulbifera using integrated serum metabolomics and network pharmacology. Biomed Chromatogr 2023; 37:e5707. [PMID: 37496197 DOI: 10.1002/bmc.5707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/22/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
Hyperlipidemia is a chronic metabolic disorder characterized by alterations in lipid metabolism as well as other pathways. Laportea bulbifera, an indigenous medicinal plant of Chinese herbal medicine, exhibits therapeutic effects on hyperlipidemia, but the mechanisms remain unclear. This study investigated the potential mechanisms underlying the anti-hyperlipidemic effects of L. bulbifera using an integrated strategy based on metabolomics and network pharmacology methods that were established to investigate the potential mechanism of anti-hyperlipidemia effect of L. bulbifera. First, the therapeutic effects of L. bulbifera on body weight reduction and biochemical indices were assessed. Next, 18 significant metabolites distinguishing the control and model groups were identified based on serum metabolomics and multivariate analyses. Then, a compound-target network was constructed by linking L. bulbifera and hyperlipidemia using network pharmacology. Three metabolic pathways involved in treating hyperlipidemia were identified. Finally, five crucial targets were selected by constructing a bionetwork starting from the compounds and ending in the metabolites. This study established an integrated strategy based on metabolomics coupled with network pharmacology and revealed the mechanism underlying the protective effects of L. bulbifera against hyperlipidemia for the first time.
Collapse
Affiliation(s)
- Qingxin Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuqi Lin
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lu Huang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuna Jin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Rongzeng Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lijun Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Chengwu Song
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lei Xu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shiying Zhang
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Ruaño G, Seip R, Windemuth A, Wu AHB, Thompson PD. Laboratory Medicine in the Clinical Decision Support for Treatment of Hypercholesterolemia: Pharmacogenetics of Statins. Clin Lab Med 2016; 36:473-91. [PMID: 27514463 DOI: 10.1016/j.cll.2016.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Statin responsiveness is an area of great research interest given the success of the drug class in the treatment of hypercholesterolemia and in primary and secondary prevention of cardiovascular disease. Interrogation of the patient's genome for gene variants will eventually guide anti-hyperlipidemic intervention. In this review, we discuss methodological approaches to discover genetic markers predictive of class-wide and drug-specific statin efficacy and safety. Notable pharmacogenetic findings are summarized from hypothesis-free genome wide and hypothesis-led candidate gene association studies. Physiogenomic models and clinical decision support systems will be required for DNA-guided statin therapy to reach practical use in medicine.
Collapse
Affiliation(s)
| | - Richard Seip
- Sanofi Genzyme, 500 Kendall Street, Cambridge, MA 02142, USA
| | | | - Alan H B Wu
- Department of Laboratory Medicine, San Francisco General Hosptial, 1001 Potrero Avenue, San Francisco, CA 94110, USA
| | - Paul D Thompson
- Division of Cardiology, Hartford Hospital, 80 Seymour Street, Hartford, CT 06106, USA
| |
Collapse
|
4
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Duconge J, Ruaño G. 'Generic to genetic' transition in cardiovascular and neuropsychiatric drugs: opportunity for personalized medicine. Pharmacogenomics 2013; 13:1097-100. [PMID: 22909196 DOI: 10.2217/pgs.12.75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|