1
|
Scudeler MM, Manóchio C, Braga Pinto AJ, Santos Cirino HD, da Silva CS, Rodrigues-Soares F. Breast cancer pharmacogenetics: a systematic review. Pharmacogenomics 2023; 24:107-122. [PMID: 36475975 DOI: 10.2217/pgs-2022-0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Breast cancer was declared the most prevalent type of cancer in 2020. Among other factors, treatment response can be affected by genetic polymorphisms - which is the focus of pharmacogenetics - and ethnicity is also a contributing factor in this context. Relevant genes in disease treatment pathways were selected to evaluate treatment response from the pharmacogenetic perspective; polymorphism frequencies and ethnic and continental representation across the available literature were also assessed through a systematic review. The identified associations and gaps have been described in this study with the purpose that, in the future, treatments can be personalized and thus be more effective, safer, and accessible to all.
Collapse
Affiliation(s)
- Mariana M Scudeler
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Caíque Manóchio
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Alex J Braga Pinto
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| | - Heithor Dos Santos Cirino
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cléber S da Silva
- Departamento de Ginecologia e Obstetrícia, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil.,Departamento de Cirurgia de Mama, Hospital Hélio Angotti, Uberaba, Minas Gerais, 38010-180, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, 38025-350, Brazil
| |
Collapse
|
2
|
Annalora AJ, Marcus CB, Iversen PL. Alternative Splicing in the Cytochrome P450 Superfamily Expands Protein Diversity to Augment Gene Function and Redirect Human Drug Metabolism. Drug Metab Dispos 2017; 45:375-389. [PMID: 28188297 DOI: 10.1124/dmd.116.073254] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/06/2017] [Indexed: 02/13/2025] Open
Abstract
The human genome encodes 57 cytochrome P450 genes, whose enzyme products metabolize hundreds of drugs, thousands of xenobiotics, and unknown numbers of endogenous compounds, including steroids, retinoids, and eicosanoids. Indeed, P450 genes are the first line of defense against daily environmental chemical challenges in a manner that parallels the immune system. Several National Institutes of Health databases, including PubMed, AceView, and Ensembl, were queried to establish a comprehensive analysis of the full human P450 transcriptome. This review describes a remarkable diversification of the 57 human P450 genes, which may be alternatively processed into nearly 1000 distinct mRNA transcripts to shape an individual's P450 proteome. Important P450 splice variants from families 1A, 1B, 2C, 2D, 3A, 4F, 19A, and 24A have now been documented, with some displaying alternative subcellular distribution or catalytic function directly linked to a disease pathology. The expansion of P450 transcript diversity involves tissue-specific splicing factors, transformation-sensitive alternate splicing, trans-splicing between gene transcripts, single-nucleotide polymorphisms, and epigenetic regulation of alternate splicing. Homeostatic regulation of variant P450 expression is influenced also by nuclear receptor signaling, suppression of nonsense-mediated decay or premature termination codons, mitochondrial dysfunction, or host infection. This review focuses on emergent aspects of the adaptive gene-splicing process, which when viewed through the lens of P450-nuclear receptor gene interactions, resembles a primitive immune-like system that can rapidly monitor, respond, and diversify to acclimate to fluctuations in endo-xenobiotic exposure. Insights gained from this review should aid future drug discovery and improve therapeutic management of personalized drug regimens.
Collapse
Affiliation(s)
- Andrew J Annalora
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Craig B Marcus
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Patrick L Iversen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
3
|
Kim A, Yu BY, Dueker SR, Shin KH, Kim HS, Ahn H, Cho JY, Yu KS, Jang IJ, Lee H. An Accelerator Mass Spectrometry-Enabled Microtracer Study to Evaluate the First-Pass Effect on the Absorption of YH4808. Clin Pharmacol Ther 2017; 102:537-546. [PMID: 28214288 DOI: 10.1002/cpt.672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/25/2022]
Abstract
14 C-labeled YH4808, a novel potassium-competitive acid blocker, was intravenously administered as a microtracer at 80 μg (11.8 kBq or 320 nCi) concomitantly with the nonradiolabeled oral drug at 200 mg to determine the absolute bioavailability and to assess the effect of pharmacogenomics on the oral absorption of YH4808. The absolute bioavailability was low and highly variable (mean, 10.1%; range, 2.3-19.3%), and M3 and M8, active metabolites of YH4808, were formed 22.6- and 38.5-fold higher after oral administration than intravenous administration, respectively. The product of the fraction of an oral YH4808 dose entering the gut wall and the fraction of YH4808 passing on to the portal circulation was larger in subjects carrying the variants of the CHST3, SLC15A1, and SULT1B1 genes. A combined LC+AMS is a useful tool to construct a rich and highly informative pharmacokinetic knowledge core in early clinical drug development at a reasonable cost.
Collapse
Affiliation(s)
- A Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - B-Y Yu
- Korea Institute of Science and Technology, Seoul, Korea
| | | | - K-H Shin
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - H S Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - H Ahn
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - J-Y Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - K-S Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - I-J Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - H Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Armamento-Villareal R, Shah VO, Aguirre LE, Meisner ALW, Qualls C, Royce ME. The rs4646 and rs12592697 Polymorphisms in CYP19A1 Are Associated with Disease Progression among Patients with Breast Cancer from Different Racial/Ethnic Backgrounds. Front Genet 2016; 7:211. [PMID: 27994616 PMCID: PMC5133243 DOI: 10.3389/fgene.2016.00211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022] Open
Abstract
Given the racial/ethnic disparities in breast cancer, we evaluated the association between CYP19A1 single nucleotide polymorphisms (SNPs) on disease progression in women with breast cancer from different racial/ethnic backgrounds. This is a cross-sectional analysis of data from 327 women with breast cancer in the Expanded Breast Cancer Registry program of the University of New Mexico. Stored DNA samples were analyzed for CYP19A1 SNPs using a custom designed microarray panel. Genotype-phenotype correlations were analyzed. Of the 384 SNPs, 2 were associated with clinically significant outcomes, the rs4646 and rs12592697. The T allele for the rs4646 was associated with advanced stage of the disease at the time of presentation (odds ratio [OR]:1.8, confidence intervals [CI]: 1.05–3.13, p < 0.05) and a more progressive disease (OR: 2.1 [CI: 1.1–4.0], p = 0.04). For the rs12592697, the variant T allele was more frequent in Hispanic women and associated with a more progressive disease (OR: 2.05 [CI: 1.0–4.0], p = 0.04). However, further analysis according to menopausal status showed that the association between these 2 SNPs with disease progression or the stage at diagnosis are confined only to postmenopausal women. The odds ratios of disease progression among postmenopausal women carrying the T allele for the rs4646 and rs12592697 are 3.05 (1.21, 7.74, p = 0.02) and 3.80 (1.24, 11.6, p = 0.02), respectively. Regardless, differences in disease progression among the different genotypes for both SNPs disappeared after adjustment for treatment. In summary, the rs4646 and the rs12592697 SNPs in CYP19A1 are associated with differences in disease progression in postmenopausal women. However, treatment appears to mitigate the differences in genetic risk.
Collapse
Affiliation(s)
- Reina Armamento-Villareal
- Department of Internal Medicine, Baylor College of MedicineHouston, TX, USA; Department of Internal Medicine, Michael E. DeBakey VA Medical CenterHouston, TX, USA
| | - Vallabh O Shah
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science CenterAlbuquerque, NM, USA; New Mexico Tumor Registry, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Lina E Aguirre
- Department of Internal Medicine, New Mexico VA Health Care System Albuquerque, NM, USA
| | - Angela L W Meisner
- New Mexico Tumor Registry, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| | - Clifford Qualls
- Department of Mathematics, University of New Mexico Health Science Center Albuquerque, NM, USA
| | - Melanie E Royce
- New Mexico Tumor Registry, University of New Mexico Health Sciences Center Albuquerque, NM, USA
| |
Collapse
|
5
|
Rumiato E, Brunello A, Ahcene-Djaballah S, Borgato L, Gusella M, Menon D, Pasini F, Amadori A, Saggioro D, Zagonel V. Predictive markers in elderly patients with estrogen receptor-positive breast cancer treated with aromatase inhibitors: an array-based pharmacogenetic study. THE PHARMACOGENOMICS JOURNAL 2015; 16:525-529. [PMID: 26503812 DOI: 10.1038/tpj.2015.73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 11/09/2022]
Abstract
So far, no reliable predictive clinicopathological markers of response to aromatase inhibitors (AIs) have been identified, and little is known regarding the role played by host genetics. To identify constitutive predictive markers, an array-based association study was performed in a cohort of 55 elderly hormone-dependent breast cancer (BC) patients treated with third-generation AIs. The array used in this study interrogates variants in 225 drug metabolism and disposition genes with documented functional significance. Six variants emerged as associated with response to AIs: three located in ABCG1, UGT2A1, SLCO3A1 with a good response, two in SLCO3A1 and one in ABCC4 with a poor response. Variants in the AI target CYP19A1 resulted associated with a favourable response only as haplotype; haplotypes with increased response association were also detected for ABCG1 and SLCO3A1. These results highlight the relevance of host genetics in the response to AIs and represent a first step toward precision medicine for elderly BC patients.
Collapse
Affiliation(s)
- E Rumiato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - A Brunello
- Medical Oncology 1 Unit, Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - S Ahcene-Djaballah
- Medical Oncology 1 Unit, Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - L Borgato
- Hemato-Oncology Unit, Medical Science Department ULSS 13, Mirano, Venezia, Italy
| | - M Gusella
- Division of Oncology, Rovigo General Hospital, ULSS 18, Rovigo, Italy
| | - D Menon
- Division of Oncology, Rovigo General Hospital, ULSS 18, Rovigo, Italy
| | - F Pasini
- Division of Oncology, Rovigo General Hospital, ULSS 18, Rovigo, Italy
| | - A Amadori
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, Oncology Section, University of Padova, Padova, Italy
| | - D Saggioro
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - V Zagonel
- Medical Oncology 1 Unit, Department of Clinical and Experimental Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
6
|
RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients. Oncol Rep 2015; 34:1883-94. [DOI: 10.3892/or.2015.4183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 11/05/2022] Open
|
7
|
Artigalás O, Vanni T, Hutz MH, Ashton-Prolla P, Schwartz IV. Influence of CYP19A1 polymorphisms on the treatment of breast cancer with aromatase inhibitors: a systematic review and meta-analysis. BMC Med 2015; 13:139. [PMID: 26067721 PMCID: PMC4475294 DOI: 10.1186/s12916-015-0373-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many clinical trials have shown the efficacy of aromatase inhibitors (AIs) in the management of breast cancer (BC). There is growing evidence that CYP19A1 single-nucleotide polymorphisms (SNPs) are associated with clinical response (CR) and adverse effects (AEs) among BC patients treated with AIs. The aim of this study was to analyze the association between CYP19A1 polymorphisms and AI treatment in BC patients. METHODS A systematic review was performed in MEDLINE, EMBASE, and LILACS. A meta-analysis was conducted to compare the association between CYP19A1 variants and treatment response among BC patients. RESULTS A total of 12 studies were included in the final analysis. There was significant variation among the populations studied and the SNPs and outcomes investigated. A meta-analysis was only possible for the evaluation of SNP rs4646 vs. the wild-type variant with respect to time to progression (TTP) among metastatic BC patients treated with AI. TTP was significantly increased in patients with the rs4646 variant compared with the wild-type gene (hazard ratio (HR) = 0.51 [95 % confidence interval (CI), 0.33-0.78], P = 0.002). Seven studies analyzed the association between AEs with different polymorphisms of CYP19A1. Although there was a statistically significant association with musculoskeletal adverse events (rs934635, rs60271534, rs700518rs, and haplotype M_3_5) and with vasomotor symptoms (rs934635, rs1694189, rs7176005, and haplotype M_5_3) in individual studies, similar associations were not observed in further studies. No statistically significant association between musculoskeletal AEs and SNPs rs4646, rs10046, rs727479, and rs1062033 was found. CONCLUSIONS These findings suggest that the presence of the rs4646 variant may be a predictive factor of the benefit of AI treatment for BC. The effects of CYP19A1 polymorphisms on clinical outcomes were most often detected in individual studies, suggesting that longer-term studies will better clarify these associations. Additional studies are needed to clarify the predictive value of other SNPs and whether CYP19A1 genotyping should be used to guide AI treatment.
Collapse
Affiliation(s)
- Osvaldo Artigalás
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, UFRGS, Av. Bento Gonçalves, 9500 - Prédio 43323M CEP: 91501-970 - Caixa Postal 15053, Porto Alegre, Rio Grande do Sul, Brazil. .,Genetics Unit, Children's Hospital, Grupo Hospitalar Conceição, GHC, Av. Francisco Trein, 596, CEP 91350-200, Porto Alegre, RS, Brazil.
| | - Tazio Vanni
- Coordenação Geral de Avaliação de Tecnologias em Saúde - CGATS, Department of Science and Technology, Ministry of Health, SCN Quadra 02 Projeção C Subsolo Sala T-004, CEP: 70712-902, Brasília, DF, Brazil.
| | - Mara Helena Hutz
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, UFRGS, Av. Bento Gonçalves, 9500 - Prédio 43323M CEP: 91501-970 - Caixa Postal 15053, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Patricia Ashton-Prolla
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, UFRGS, Av. Bento Gonçalves, 9500 - Prédio 43323M CEP: 91501-970 - Caixa Postal 15053, Porto Alegre, Rio Grande do Sul, Brazil. .,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Rua Ramiro Barcelos, 2350, CEP: 90035-903, Porto Alegre, RS, Brazil.
| | - Ida Vanessa Schwartz
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, UFRGS, Av. Bento Gonçalves, 9500 - Prédio 43323M CEP: 91501-970 - Caixa Postal 15053, Porto Alegre, Rio Grande do Sul, Brazil. .,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Rua Ramiro Barcelos, 2350, CEP: 90035-903, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Umamaheswaran G, Kadambari D, Kumar ASA, Revathy M, Anjana R, Adithan C, Dkhar SA. Polymorphic genetic variations of cytochrome P450 19A1 and T-cell leukemia 1A genes in the Tamil population. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:102-113. [PMID: 25481307 DOI: 10.1016/j.etap.2014.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 06/04/2023]
Abstract
Aromatase inhibitors (AIs) are anti-neoplastic drugs widely used for the treatment of endocrine responsive breast carcinoma in postmenopausal women. Drug disposition, efficacy and tolerability of these agents are influenced by germ-line polymorphisms in the sequence of the genes encoding CYP19A1 and TCL1A proteins. In the current work, we aimed to determine the haplotype structures, linkage disequilibrium (LD) patterns, and allele and genotype frequency distribution of pharmacologically important variants from two genes (CYP19A1 and TCL1A) in Tamil population and assessed their ethnic differences. DNA derived from peripheral leukocytes of 111 healthy subjects were genotyped for 15 pharmacogenetic variants by real time thermocycler through allelic discrimination method using TaqMan 5' nuclease genotyping assay. The polymorphic variant allele frequencies of CYP19A1 were 42.3% (rs4646, T), 18% (rs10046, T), 36% (rs700519, T), 16.7% (rs700518, G), 26.1% (rs727479, G), 18% (rs4775936, T), 32% (rs10459592, G), 15.3% (rs1062033, C), 33.8% (rs749292, A), 40.1% (rs6493497, T) and 40.1% (rs7176005, G). TCL1A gene allele frequencies were 26.1% (rs7158782, G), 27% (rs7159713, G), 21.2% (rs2369049, G) and 27.5% (rs11849538, G). Comparing our data across the 5 HapMap populations (CEU, GIH, HCB, JPT and YRI) huge inter-ethnic differences were exhibited in the variant allele frequencies, LD patterns and haplotype blocks. Our results emphasize the importance of normative frequency documentation and will offer significant clinical relevance in personalizing AIs therapy.
Collapse
Affiliation(s)
- Gurusamy Umamaheswaran
- ICMR Centre for Advanced Research in Pharmacogenomics, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry 605006, India.
| | - Dharanipragada Kadambari
- Department of Surgery, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry 605006, India
| | - Annan Sudarsan Arun Kumar
- ICMR Centre for Advanced Research in Pharmacogenomics, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry 605006, India
| | - Mohan Revathy
- Department of Biotechnology and Biochemical Engineering, Sree Buddha College of Engineering, Alappuzha 690529, Kerala, India
| | - Raj Anjana
- Department of Biotechnology and Biochemical Engineering, Sree Buddha College of Engineering, Alappuzha 690529, Kerala, India
| | - Chandrasekaran Adithan
- ICMR Centre for Advanced Research in Pharmacogenomics, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry 605006, India
| | - Steven Aibor Dkhar
- ICMR Centre for Advanced Research in Pharmacogenomics, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Pondicherry 605006, India
| |
Collapse
|
9
|
Umamaheswaran G, Dkhar SA, Kalaivani S, Anjana R, Revathy M, Jaharamma M, Shree KML, Kadambari D, Adithan C. Haplotype structures and functional polymorphic variants of the drug target enzyme aromatase (CYP19A1) in South Indian population. Med Oncol 2013; 30:665. [PMID: 23893151 DOI: 10.1007/s12032-013-0665-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
CYP19A1 gene product aromatase (CYP19A1) is a 58-kDa protein and belongs to the member of the cytochrome P450 superfamily, which facilitates the bioconversion of estrogens from androgens. Single-nucleotide polymorphisms (SNPs) of CYP19A1 affect the activity of the enzyme and have been implicated in the association of estrogen-dependent disease, prognosis, therapeutic efficacy, and toxicity of third-generation aromatase inhibitors (AIs). Based on ethnicity, the frequency distribution of CYP19A1 alleles will differ, and until now, no data are available for Indians. Using qRT-PCR with TaqMan assays, the frequencies of functionally important polymorphic variants of CYP19A1 gene were determined in 163 healthy subjects of South Indian origin. The observed frequencies of the CYP19A1 minor alleles for the SNPs rs4646 (T), rs10046 (T), rs700519 (T), rs700518 (G), rs727479 (G), rs4775936 (T), rs10459592 (G), rs749292 (A), rs6493497 (T), and rs7176005 (A) are 41.1 (35.8-46.4), 20.0 (15.6-24.3), 33.7 (28.6-38.9), 17.8 (13.6-21.9), 25.8 (21.0-30.5), 19.9 (15.6-24.3), 33.7 (28.6-38.9), 24.9 (20.2-29.5), 35.9 (30.7-41.1), and 35.9 (30.7-41.1), respectively. Strong linkage disequilibrium existed between CYP19A1 SNPs, and sixteen different haplotype structures with a frequency >1% were derived from all the 10 SNPs tested. The most common being the haplotype (H1) GCTATCTGTG with a frequency of about 17.8%. Gender-specific assessment showed significant difference in the allele frequency for rs749292 (p < 0.04), and greater inter-ethnic variation was detected in the distribution of CYP19A1 variants except for rs727479. Our results could provide preliminary insight for further pharmacogenetic investigations of AIs as well as for subsequent molecular epidemiological studies on the contribution of these variants to the occurrence and development of estrogen-dependent disease in South Indians.
Collapse
Affiliation(s)
- Gurusamy Umamaheswaran
- ICMR Centre for Advanced Research in Pharmacogenomics, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry 605006, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marini F, Brandi ML. The future of pharmacogenetics for osteoporosis. Pharmacogenomics 2013; 14:641-53. [DOI: 10.2217/pgs.13.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The possibility to predict the outcome of medical treatments, both in terms of efficacy and development of adverse effects, is the main goal of modern personalized medicine. The principal aim of pharmacogenetics is to design specific predictive genetic tests, to be performed prior to any drug treatment, and to tailor the therapy for each patient based on the results of these tests. Few pharmacogenetic tests are today validated and commonly applied in clinical practice, and none in the area of osteoporosis and bone disorders. Surely, the complex regulation of bone metabolism and the involvement of numerous different molecular pathways makes it difficult to individuate responsible genes and polymorphisms involved in the modulation of anti-osteoporotic drug response and, subsequently, in designing specific predictive analyses.
Collapse
Affiliation(s)
- Francesca Marini
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Metabolic Bone Unit, Department of Surgery & Translation Medicine, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Newman WG, Flockhart D. Breast cancer pharmacogenomics: where we are going. Pharmacogenomics 2012; 13:629-31. [PMID: 22515602 DOI: 10.2217/pgs.12.37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|