1
|
Vitale G, Mattiaccio A, Conti A, Berardi S, Vero V, Turco L, Seri M, Morelli MC. Molecular and Clinical Links between Drug-Induced Cholestasis and Familial Intrahepatic Cholestasis. Int J Mol Sci 2023; 24:ijms24065823. [PMID: 36982896 PMCID: PMC10057459 DOI: 10.3390/ijms24065823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Idiosyncratic Drug-Induced Liver Injury (iDILI) represents an actual health challenge, accounting for more than 40% of hepatitis cases in adults over 50 years and more than 50% of acute fulminant hepatic failure cases. In addition, approximately 30% of iDILI are cholestatic (drug-induced cholestasis (DIC)). The liver's metabolism and clearance of lipophilic drugs depend on their emission into the bile. Therefore, many medications cause cholestasis through their interaction with hepatic transporters. The main canalicular efflux transport proteins include: 1. the bile salt export pump (BSEP) protein (ABCB11); 2. the multidrug resistance protein-2 (MRP2, ABCC2) regulating the bile salts' independent flow by excretion of glutathione; 3. the multidrug resistance-1 protein (MDR1, ABCB1) that transports organic cations; 4. the multidrug resistance-3 protein (MDR3, ABCB4). Two of the most known proteins involved in bile acids' (BAs) metabolism and transport are BSEP and MDR3. BSEP inhibition by drugs leads to reduced BAs' secretion and their retention within hepatocytes, exiting in cholestasis, while mutations in the ABCB4 gene expose the biliary epithelium to the injurious detergent actions of BAs, thus increasing susceptibility to DIC. Herein, we review the leading molecular pathways behind the DIC, the links with the other clinical forms of familial intrahepatic cholestasis, and, finally, the main cholestasis-inducing drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sonia Berardi
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Vittoria Vero
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| |
Collapse
|
2
|
Elisabetta G, Anna B, Adriano P, Andrea CD, Guido S, Ilaria P, Andrea B, Lorenzo A, Serena P. Pharmacogenomics of soft tissue sarcomas: New horizons to understand efficacy and toxicity. Cancer Treat Res Commun 2022; 31:100528. [PMID: 35123198 DOI: 10.1016/j.ctarc.2022.100528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023]
Abstract
Clinical responses to anticancer therapies in advanced soft tissue sarcoma (STS) are unfortunately limited to a small subset of patients. Much of the inter-individual variability in treatment efficacy and risk of toxicities is as result of polymorphisms in genes encoding proteins involved in drug pharmacokinetics and pharmacodynamics. Therefore, the detection of pharmacogenomics (PGx) biomarkers that might predict drug response and toxicity can be useful to explain the genetic basis for the differences in treatment efficacy and toxicity among STS patients. PGx markers are frequently located in transporters, drug-metabolizing enzyme genes, drug targets, or HLA alleles. Along this line, genetic variability harbouring in the germline genome of the patients can influence systemic pharmacokinetics and pharmacodynamics of the treatments, acting as predictive biomarkers for drug-induced toxicity and treatment efficacy. By linking drug activity to the functional complexity of cancer genomes, also systematic pharmacogenomic profiling in cancer cell lines and primary STS samples represents area of active investigation that could eventually lead to enhanced efficacy and offer a powerful biomarker discovery platform to optimize current treatments and improve the knowledge about the individual's drug response in STS patients into the clinical practice.
Collapse
Affiliation(s)
| | - Boddi Anna
- Department of Health Science, University of Florence, Florence, Italy
| | - Pasqui Adriano
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Campanacci Domenico Andrea
- Department of Health Science, University of Florence, Florence, Italy; Department of Orthopaedic Oncology and Reconstructive Surgery, Careggi University Hospital, Florence, Italy
| | - Scoccianti Guido
- Department of Health Science, University of Florence, Florence, Italy
| | - Palchetti Ilaria
- Department of Chemistry Ugo Schiff, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Bernini Andrea
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena, 53100 Italy
| | - Antonuzzo Lorenzo
- Clinical Oncology Unit, Careggi University Hospital, Florence, Italy; Medical Oncology Unit, Careggi University Hospital, Florence, Italy; Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pillozzi Serena
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
3
|
Maillard M, Chevreau C, Le Louedec F, Cassou M, Delmas C, Gourdain L, Blay JY, Cupissol D, Bompas E, Italiano A, Isambert N, Delcambre-Lair C, Penel N, Bertucci F, Guillemet C, Plenecassagnes J, Foulon S, Chatelut É, Le Cesne A, Thomas F. Pharmacogenetic Study of Trabectedin-Induced Severe Hepatotoxicity in Patients with Advanced Soft Tissue Sarcoma. Cancers (Basel) 2020; 12:E3647. [PMID: 33291741 PMCID: PMC7761985 DOI: 10.3390/cancers12123647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/26/2023] Open
Abstract
Hepatotoxicity is an important concern for nearly 40% of the patients treated with trabectedin for advanced soft tissue sarcoma (ASTS). The mechanisms underlying these liver damages have not yet been elucidated but they have been suggested to be related to the production of reactive metabolites. The aim of this pharmacogenetic study was to identify genetic variants of pharmacokinetic genes such as CYP450 and ABC drug transporters that could impair the trabectedin metabolism in hepatocytes. Sixty-three patients with ASTS from the TSAR clinical trial (NCT02672527) were genotyped by next-generation sequencing for 11 genes, and genotype-toxicity association analyses were performed with R package SNPassoc. Among the results, ABCC2 c.1249A allele (rs2273697) and ABCG2 intron variant c.-15994T (rs7699188) were associated with an increased risk of severe cytolysis, whereas ABCC2 c.3563A allele had a protective effect, as well as ABCB1 variants rs2032582 and rs1128503 (p-value < 0.05). Furthermore, CYP3A5*1 rs776746 (c.6986A > G) increased the risk of severe overall hepatotoxicity (p = 0.012, odds ratio (OR) = 5.75), suggesting the implication of metabolites in the hepatotoxicity. However, these results did not remain significant after multiple analysis correction. These findings need to be validated on larger cohorts of patients, with mechanistic studies potentially being able to validate the functional consequences of these variants.
Collapse
Affiliation(s)
- Maud Maillard
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Christine Chevreau
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Félicien Le Louedec
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Manon Cassou
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Caroline Delmas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Laure Gourdain
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Jean-Yves Blay
- Medical Oncology Department, Centre Léon Bérard, 69008 Lyon, France;
| | - Didier Cupissol
- Medical Oncology Department, Institut Régional du Cancer Val d’Aurelle, 34090 Montpellier, France;
| | - Emmanuelle Bompas
- Medical Oncology Department, Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France;
| | - Antoine Italiano
- Medical Oncology Department, Institut Bergonié, 33000 Bordeaux, France;
| | - Nicolas Isambert
- Medical Oncology Department, Centre Georges François Leclerc, 21000 Dijon, France;
| | | | - Nicolas Penel
- Medical Oncology Department, Centre Oscar Lambret—Université de Lille, 59000 Lille, France;
| | - François Bertucci
- Medical Oncology Department, Institut Paoli-Calmettes, 13009 Marseille, France;
| | - Cécile Guillemet
- Medical Oncology Department, Centre Henri Becquerel, 76038 Rouen, France;
| | - Julien Plenecassagnes
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Stéphanie Foulon
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France;
- Oncostat U1018, Inserm, University Paris-Saclay, Labeled Ligue Contre le Cancer, 94805 Villejuif, France
| | - Étienne Chatelut
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Axel Le Cesne
- Medical Oncology Department, Gustave Roussy, 94805 Villejuif, France;
| | - Fabienne Thomas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| |
Collapse
|
4
|
Rao T, Tan Z, Peng J, Guo Y, Chen Y, Zhou H, Ouyang D. The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacol Res 2019; 146:104283. [PMID: 31129178 DOI: 10.1016/j.phrs.2019.104283] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022]
Abstract
Natural products have represented attractive alternatives for disease prevention and treatment over the course of human history and have contributed to the development of modern drugs. These natural products possess beneficial efficacies as well as adverse efffects, which vary largely among individuals because of genetic variations in their pharmacokinetics and pharmacodynamics. As with other synthetic chemical drugs, the dosing of natural products can be optimized to improve efficacy and reduce toxicity according to the pharmacogenetic properties. With the emergence and development of pharmacogenomics, it is possible to discover and identify the targets/mechanisms of pharmacological effects and therapeutic responses of natural products effectively and efficiently on the whole genome level. This review covers the effects of genetic variations in drug metabolizing enzymes, drug transporters, and direct and indirect interactions with the pharmacological targets/pathways on the individual response to natural products, and provides suggestions on dosing regimen adjustments of natural products based on their pharmacokinetic and pharmacogenetic paratmeters. Finally, we provide our viewpoints on the importance and necessity of pharmacogenetic and pharmacogenomic research of natural products in natural medicine's rational development and clinical application of precision medicine.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Jingbo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, PR China; Institute of Clinical Pharmacology, Central South University, Changsha, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, PR China; National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, PR China.
| |
Collapse
|
5
|
Affiliation(s)
- A D Ricart
- Department of Oncology, Early Development Strategy & Innovation, Novartis Pharmaceuticals Corporation, East Hanover, USA
| |
Collapse
|
6
|
Zamek-Gliszczynski MJ, Chu X, Polli JW, Paine MF, Galetin A. Understanding the transport properties of metabolites: case studies and considerations for drug development. Drug Metab Dispos 2014; 42:650-64. [PMID: 24346835 DOI: 10.1124/dmd.113.055558] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Recent analyses demonstrated that metabolites are unlikely to contribute significantly to clinical inhibition of cytochrome P450 (P450)-mediated drug metabolism, and that only ∼2% of this type of drug interaction could not be predicted from the parent drug alone. Due to generally increased polarity and decreased permeability, metabolites are less likely to interact with P450s, but their disposition is instead more likely to involve transporters. This commentary presents case studies illustrating the potential importance of transporters as determinants of metabolite disposition, and as sites of drug interactions, which may alter drug efficacy and safety. Many of these examples are hydrophilic phase II conjugates involved in enterohepatic cycling, where modulation of transporter-dependent disposition may alter pharmacokinetics/pharmacodynamics. The case studies suggest that characterization of metabolite disposition, toxicology, and pharmacology should not focus solely on metabolites with appreciable systemic exposure, but should take into consideration major excretory metabolites. A more thorough understanding of metabolite (phase I and II; circulating and excreted) transport properties during drug development may provide an improved understanding of complex drug-drug interactions (DDIs) that can alter drug and/or metabolite systemic and intracellular exposure. Knowledge and capability gaps remain in clinical translation of in vitro and animal data regarding metabolite disposition. To this end, useful experimental and modeling approaches are highlighted. Application of these tools may lead to a better understanding of metabolite victim and perpetrator DDI potential, and ultimately the establishment of approaches for prediction of pharmacodynamic and toxicodynamic consequences of metabolite transport modulation.
Collapse
Affiliation(s)
- Maciej J Zamek-Gliszczynski
- Drug Disposition, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana (M.J.Z.-G.); Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Rahway, New Jersey (X.C.); Drug Metabolism and Pharmacokinetics, GlaxoSmithKline Inc., Research Triangle Park, North Carolina (J.W.P.); College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.); and Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (A.G.)
| | | | | | | | | |
Collapse
|