1
|
Huang K, Li S, Yang M, Teng Z, Xu B, Wang B, Chen J, Zhao L, Wu H. The epigenetic mechanism of metabolic risk in bipolar disorder. Obes Rev 2024; 25:e13816. [PMID: 39188090 DOI: 10.1111/obr.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024]
Abstract
Bipolar disorder (BD) is a complex and severe mental illness that causes significant suffering to patients. In addition to the burden of depressive and manic symptoms, patients with BD are at an increased risk for metabolic syndrome (MetS). MetS includes factors associated with an increased risk of atherosclerotic cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM), which may increase the mortality rate of patients with BD. Several studies have suggested a link between BD and MetS, which may be explained at an epigenetic level. We have focused on epigenetic mechanisms to review the causes of metabolic risk in BD.
Collapse
Affiliation(s)
- Kexin Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Min Yang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Baoyan Xu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Psychiatry, Hebei Provincial Mental Health Center, Hebei Key Laboratory of Major Mental and Behavioral Disorders, The Sixth Clinical Medical College of Hebei University, Baoding, Hebei, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Liping Zhao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Dubath C, Porcu E, Delacrétaz A, Grosu C, Laaboub N, Piras M, von Gunten A, Conus P, Plessen KJ, Kutalik Z, Eap CB. DNA methylation may partly explain psychotropic drug-induced metabolic side effects: results from a prospective 1-month observational study. Clin Epigenetics 2024; 16:36. [PMID: 38419113 PMCID: PMC10903022 DOI: 10.1186/s13148-024-01648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Metabolic side effects of psychotropic medications are a major drawback to patients' successful treatment. Using an epigenome-wide approach, we aimed to investigate DNA methylation changes occurring secondary to psychotropic treatment and evaluate associations between 1-month metabolic changes and both baseline and 1-month changes in DNA methylation levels. Seventy-nine patients starting a weight gain inducing psychotropic treatment were selected from the PsyMetab study cohort. Epigenome-wide DNA methylation was measured at baseline and after 1 month of treatment, using the Illumina Methylation EPIC BeadChip. RESULTS A global methylation increase was noted after the first month of treatment, which was more pronounced (p < 2.2 × 10-16) in patients whose weight remained stable (< 2.5% weight increase). Epigenome-wide significant methylation changes (p < 9 × 10-8) were observed at 52 loci in the whole cohort. When restricting the analysis to patients who underwent important early weight gain (≥ 5% weight increase), one locus (cg12209987) showed a significant increase in methylation levels (p = 3.8 × 10-8), which was also associated with increased weight gain in the whole cohort (p = 0.004). Epigenome-wide association analyses failed to identify a significant link between metabolic changes and methylation data. Nevertheless, among the strongest associations, a potential causal effect of the baseline methylation level of cg11622362 on glycemia was revealed by a two-sample Mendelian randomization analysis (n = 3841 for instrument-exposure association; n = 314,916 for instrument-outcome association). CONCLUSION These findings provide new insights into the mechanisms of psychotropic drug-induced weight gain, revealing important epigenetic alterations upon treatment, some of which may play a mediatory role.
Collapse
Affiliation(s)
- Céline Dubath
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland.
| | - Eleonora Porcu
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Delacrétaz
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Claire Grosu
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Nermine Laaboub
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Marianna Piras
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- University Center for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland
| | - Chin Bin Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Hôpital de Cery, 1008, Prilly, Lausanne, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
3
|
Wang SM, Kong XY, Li M, Sun LL, Yan D. Association of GGH Promoter Methylation Levels with Methotrexate Concentrations in Chinese Children with Acute Lymphoblastic Leukemia. Pharmacotherapy 2020; 40:614-622. [PMID: 32476160 DOI: 10.1002/phar.2430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND It is known that γ-glutamyl hydrolase (GGH) is involved in the disposition of methotrexate (MTX), and GGH activity is regulated by DNA methylation in acute lymphoblastic leukemia (ALL) cells. The present study explores the methylation status of the GGH promoter in peripheral blood and its association with MTX levels and toxicities in Chinese children with ALL. METHODS Serum MTX concentrations were determined by fluorescence polarization immunoassay. Methylation quantification and genotyping for GGH rs3758149 and rs11545078 was performed by Sequenom MassARRAY in 50 pediatric patients with ALL. RESULTS Overall, the investigated region of the GGH promoter was in hypomethylated status. The methylation levels of cytosine phosphate guanine (CpG)_7, CpG_12, CpG_17, and CpG_20 were significantly higher in patients with B-cell ALL than other immunotypes (p<0.05). The methylation levels of CpG_13.14, CpG_17, and CpG_19 showed a significant negative correlation with MTX C24 hr (p<0.05). The methylation level of CpG_8.9 correlated significantly with MTX C42 hrs (p<0.05). The methylation level of CpG_19 was significantly lower in patients with MTX toxicities (p<0.05). CONCLUSIONS The methylation levels of the GGH promoter might affect MTX exposure and toxicities. These findings provided reasonable explanations for the variability of MTX responses in patients with childhood ALL.
Collapse
Affiliation(s)
- Shu-Mei Wang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Xiao-Yan Kong
- Department of Pharmacy, Armed Police Beijing Corps Hospital, Beijing, China
| | - Miao Li
- Department of Pediatrics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lu-Lu Sun
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China.,International Cooperation & Joint Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| |
Collapse
|
4
|
Burghardt KJ, Khoury AS, Msallaty Z, Yi Z, Seyoum B. Antipsychotic Medications and DNA Methylation in Schizophrenia and Bipolar Disorder: A Systematic Review. Pharmacotherapy 2020; 40:331-342. [PMID: 32058614 DOI: 10.1002/phar.2375] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pharmacoepigenetics of antipsychotic treatment in severe mental illness is a growing area of research that aims to understand the interface between antipsychotic treatment and genetic regulation. Pharmacoepigenetics may some day assist in identifying treatment response mechanisms or become one of the components in the implementation of precision medicine. To understand the current evidence regarding the effects of antipsychotics on DNA methylation a systematic review with qualitative synthesis was performed through Pubmed, Embase and Psychinfo from earliest data to June 2019. Studies were included if they analyzed DNA methylation in an antipsychotic-treated population of patients with schizophrenia or bipolar disorder. Data extraction occurred via a standardized format and study quality was assessed. Twenty-nine studies were identified for inclusion. Study design, antipsychotic type, sample source, and methods of DNA methylation measurement varied across all studies. Eighteen studies analyzed methylation in patients with schizophrenia, four studies in patients with bipolar disorder, and seven studies in a combined sample of schizophrenia and bipolar disorder. Twenty-two studies used observational samples whereas the remainder used prospectively treated samples. Six studies assessed global methylation, five assessed epigenome-wide, and 15 performed a candidate epigenetic study. Two studies analyzed both global and gene-specific methylation, whereas one study performed a simultaneous epigenome-wide and gene-specific study. Only three genes were analyzed in more than one gene-specific study and the findings were discordant. The state of the pharmacoepigenetic literature on antipsychotic use is still in its early stages and uniform reporting of methylation site information is needed. Future work should concentrate on using prospective sampling with appropriate control groups and begin to replicate many of the novel associations that have been reported.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Audrey S Khoury
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Zaher Msallaty
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Zhengping Yi
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, Michigan
| | - Berhane Seyoum
- Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
5
|
Second-Generation Antipsychotics and Dysregulation of Glucose Metabolism: Beyond Weight Gain. Cells 2019; 8:cells8111336. [PMID: 31671770 PMCID: PMC6912706 DOI: 10.3390/cells8111336] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 02/06/2023] Open
Abstract
Second-generation antipsychotics (SGAs) are the cornerstone of treatment for schizophrenia because of their high clinical efficacy. However, SGA treatment is associated with severe metabolic alterations and body weight gain, which can increase the risk of type 2 diabetes and cardiovascular disease, and greatly accelerate mortality. Several underlying mechanisms have been proposed for antipsychotic-induced weight gain (AIWG), but some studies suggest that metabolic changes in insulin-sensitive tissues can be triggered before the onset of AIWG. In this review, we give an outlook on current research about the metabolic disturbances provoked by SGAs, with a particular focus on whole-body glucose homeostasis disturbances induced independently of AIWG, lipid dysregulation or adipose tissue disturbances. Specifically, we discuss the mechanistic insights gleamed from cellular and preclinical animal studies that have reported on the impact of SGAs on insulin signaling, endogenous glucose production, glucose uptake and insulin secretion in the liver, skeletal muscle and the endocrine pancreas. Finally, we discuss some of the genetic and epigenetic changes that might explain the different susceptibilities of SGA-treated patients to the metabolic side-effects of antipsychotics.
Collapse
|
6
|
Burghardt KJ, Goodrich JM, Dolinoy DC, Ellingrod VL. Gene-specific DNA methylation may mediate atypical antipsychotic-induced insulin resistance. Bipolar Disord 2016; 18:423-32. [PMID: 27542345 PMCID: PMC5322870 DOI: 10.1111/bdi.12422] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Atypical antipsychotics (AAPs) carry a significant risk of cardiometabolic side effects, including insulin resistance. It is thought that the insulin resistance resulting from the use of AAPs may be associated with changes in DNA methylation. We aimed to identify and validate a candidate gene associated with AAP-induced insulin resistance by using a multi-step approach that included an epigenome-wide association study (EWAS) and validation with site-specific methylation and metabolomics data. METHODS Subjects with bipolar disorder treated with AAPs or lithium monotherapy were recruited for a cross-sectional visit to analyze peripheral blood DNA methylation and insulin resistance. Epigenome-wide DNA methylation was analyzed in a discovery sample (n = 48) using the Illumina 450K BeadChip. Validation analyses of the epigenome-wide findings occurred in a separate sample (n = 72) using site-specific methylation with pyrosequencing and untargeted metabolomics data. Regression analyses were conducted controlling for known confounders in all analyses and a mediation analysis was performed to investigate if AAP-induced insulin resistance occurs through changes in DNA methylation. RESULTS A differentially methylated probe associated with insulin resistance was discovered and validated in the fatty acyl CoA reductase 2 (FAR2) gene of chromosome 12. Functional associations of this DNA methylation site with untargeted phospholipid-related metabolites were also detected. Our results identified a mediating effect of this FAR2 methylation site on AAP-induced insulin resistance. CONCLUSIONS Going forward, prospective, longitudinal studies assessing comprehensive changes in FAR2 DNA methylation, expression, and lipid metabolism before and after AAP treatment are required to assess its potential role in the development of insulin resistance.
Collapse
Affiliation(s)
- Kyle J. Burghardt
- Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Department of Pharmacy Practice. 259 Mack Avenue, Suite 2190. Detroit Michigan 48201. USA
| | - Jacyln M. Goodrich
- University of Michigan School of Public Health, Department of Environmental Sciences; 6638 SPH Tower, 1415 Washington Heights Ann Arbor, Michigan 48109. USA
| | - Dana C. Dolinoy
- University of Michigan School of Public Health, Department of Environmental Sciences; 6638 SPH Tower, 1415 Washington Heights Ann Arbor, Michigan 48109. USA
| | - Vicki L. Ellingrod
- University of Michigan, College of Pharmacy, Department of Clinical Social and Administrative Sciences. 428 Church Street, Ann Arbor, Michigan 48109. USA
- University of Michigan, School of Medicine, Department of Psychiatry. 1301 Catherine Ann Arbor, MI 48109. USA
| |
Collapse
|
7
|
Burghardt KJ, Goodrich JM, Dolinoy DC, Ellingrod VL. DNA methylation, insulin resistance and second-generation antipsychotics in bipolar disorder. Epigenomics 2015; 7:343-52. [PMID: 26077424 DOI: 10.2217/epi.15.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS This study aimed to assess the effect of second-generation antipsychotic (SGA) use and insulin resistance on a global measure of DNA methylation in patients diagnosed with bipolar disorder. MATERIALS & METHODS Subjects stable on medication (either mood stabilizer monotherapy or adjuvant SGAs) were assessed for insulin resistance. Global methylation levels were assessed in leukocyte DNA from whole blood using the Luminometric Methylation Assay. Multivariable linear regression was used to investigate the effect of insulin resistance and SGA use on DNA methylation. RESULTS A total of 115 bipolar I subjects were included in this study. The average age was 43.1 ±12.2 years and 73% were on SGAs. Average% global methylation was 77.0 ± 3.26 and was significantly influenced by insulin resistance, SGA use and smoking. CONCLUSION This is the first study to show a relationship between SGA use, insulin resistance and global DNA methylation. Further work will be needed to identify tissue- and gene-specific methylation changes.
Collapse
Affiliation(s)
- Kyle J Burghardt
- Department of Pharmacy Practice, Wayne State University Eugene Applebaum College of Pharmacy & Health Sciences, 259 Mack Avenue, Suite 2190, Detroit, MI 48201, USA
| | - Jacyln M Goodrich
- Department of Environmental Sciences, University of Michigan School of Public Health, 6638 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Department of Environmental Sciences, University of Michigan School of Public Health, 6638 SPH Tower, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Vicki L Ellingrod
- Department of Clinical Social & Administrative Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA.,Department of Psychiatry, School of Medicine, University of Michigan, 1301 Catherine, Ann Arbor, MI 48109, USA
| |
Collapse
|