1
|
Ren N, Chen L, Li B, Rankin GO, Chen YC, Tu Y. Purified Tea ( Camellia sinensis (L.) Kuntze) Flower Saponins Induce the p53-Dependent Intrinsic Apoptosis of Cisplatin-Resistant Ovarian Cancer Cells. Int J Mol Sci 2020; 21:E4324. [PMID: 32560563 PMCID: PMC7352341 DOI: 10.3390/ijms21124324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023] Open
Abstract
Ovarian cancer is currently ranked at fifth in cancer deaths among women. Patients who have undergone cisplatin-based chemotherapy can experience adverse effects or become resistant to treatment, which is a major impediment for ovarian cancer treatment. Natural products from plants have drawn great attention in the fight against cancer recently. In this trial, purified tea (Camellia sinensis (L.) Kuntze) flower saponins (PTFSs), whose main components are Chakasaponin I and Chakasaponin IV, inhibited the growth and proliferation of ovarian cancer cell lines A2780/CP70 and OVCAR-3. Flow cytometry, caspase activity and Western blotting analysis suggested that such inhibitory effects of PTFSs on ovarian cancer cells were attributed to the induction of cell apoptosis through the intrinsic pathway rather than extrinsic pathway. The p53 protein was then confirmed to play an important role in PTFS-induced intrinsic apoptosis, and the levels of its downstream proteins such as caspase families, Bcl-2 families, Apaf-1 and PARP were regulated by PTFS treatment. In addition, the upregulation of p53 expression by PTFSs were at least partly induced by DNA damage through the ATM/Chk2 pathway. The results help us to understand the mechanisms underlying the effects of PTFSs on preventing and treating platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Ning Ren
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Lianfu Chen
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Bo Li
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
| | - Gary O. Rankin
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Yi Charlie Chen
- College of Health, Science, Technology and Mathematics, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA
| | - Youying Tu
- Department of Tea Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (N.R.); (L.C.); (B.L.)
| |
Collapse
|
2
|
Norouzi-Barough L, Sarookhani MR, Sharifi M, Moghbelinejad S, Jangjoo S, Salehi R. Molecular mechanisms of drug resistance in ovarian cancer. J Cell Physiol 2018; 233:4546-4562. [PMID: 29152737 DOI: 10.1002/jcp.26289] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the most lethal malignancy among the gynecological cancers, with a 5-year survival rate, mainly due to being diagnosed at advanced stages, recurrence and resistance to the current chemotherapeutic agents. Drug resistance is a complex phenomenon and the number of known involved genes and cross-talks between signaling pathways in this process is growing rapidly. Thus, discovering and understanding the underlying molecular mechanisms involved in chemo-resistance are crucial for management of treatment and identifying novel and effective drug targets as well as drug discovery to improve therapeutic outcomes. In this review, the major and recently identified molecular mechanisms of drug resistance in ovarian cancer from relevant literature have been investigated. In the final section of the paper, new approaches for studying detailed mechanisms of chemo-resistance have been briefly discussed.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Moghbelinejad
- Department of Biochemistry and Genetic, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saranaz Jangjoo
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Englert-Golon M, Burchardt B, Budny B, Dębicki S, Majchrzycka B, Wrotkowska E, Jasiński P, Ziemnicka K, Słopień R, Ruchała M, Sajdak S. Genomic markers of ovarian adenocarcinoma and its relevancy to the effectiveness of chemotherapy. Oncol Lett 2017; 14:3401-3414. [PMID: 28927094 PMCID: PMC5588060 DOI: 10.3892/ol.2017.6590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the eighth most common cancer and the seventh highest cause of cancer-associated mortality in women worldwide. It is the second highest cause of mortality among female reproductive malignancies. The current standard first-line treatment for advanced ovarian cancer includes a combination of surgical debulking and standard systemic platinum-based chemotherapy with carboplatin and paclitaxel. Although a deeper understanding of this disease has been attained, relapse occurs in 70% of patients 18 months subsequent to the first-line treatment. Therefore, it is crucial to develop a novel drug that effectively affects ovarian cancer, particularly tumors that are resistant to current chemotherapy. The aim of the present study was to identify genes whose expression may be used to predict survival time or prognosis in ovarian cancer patients treated with chemotherapy. Gene or protein expression is an important issue in chemoresistance and survival prediction in ovarian cancer. In the present study, the research group consisted of patients treated at the Surgical Clinic of the Gynecology and Obstetrics Gynecological Clinical Hospital, Poznan University of Medical Sciences (Poznan, Poland) between May 2006 and November 2014. Additional eligibility criteria were a similar severity (International Federation of Gynecolgy and Obstetrics stage III) at the time of diagnosis, treatment undertaken in accordance with the same schedule, and an extremely good response to treatment or a lack of response to treatment. The performance of the OncoScan® assay was evaluated by running the assay on samples obtained from the four patients and by following the recommended protocol outlined in the OncoScan assay manual. The genomic screening using Affymetrix OncoScan Arrays resulted in the identification of large genomic rearrangements across all cancer tissues. In general, chromosome number changes were detected in all examined tissues. The OncoScan arrays enabled the identification of ~100 common somatic mutations. Chemotherapy response in ovarian cancer is extremely complex and challenging to study. The present study identified specific genetic alterations associated with ovarian cancer, but not with response for treatment.
Collapse
Affiliation(s)
- Monika Englert-Golon
- Surgical Gynecology Clinic of The Gynecological and Obstetrics Clinical Hospital, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Bartosz Burchardt
- Surgical Gynecology Clinic of The Gynecological and Obstetrics Clinical Hospital, Poznan University of Medical Sciences, 60-535 Poznan, Poland.,Department of Forensic Sciences, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Bartlomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Szymon Dębicki
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Blanka Majchrzycka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Elzbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Piotr Jasiński
- Gynecological and Obstetrics Clinical Hospital, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Radosław Słopień
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Stefan Sajdak
- Surgical Gynecology Clinic of The Gynecological and Obstetrics Clinical Hospital, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
4
|
Soto-Feliciano YM, Bartlebaugh JME, Liu Y, Sánchez-Rivera FJ, Bhutkar A, Weintraub AS, Buenrostro JD, Cheng CS, Regev A, Jacks TE, Young RA, Hemann MT. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev 2017; 31:973-989. [PMID: 28607179 PMCID: PMC5495126 DOI: 10.1101/gad.295857.117] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/15/2017] [Indexed: 12/17/2022]
Abstract
In this study, Soto-Feliciano et al. describe the function of the plant homeodomain finger 6 (PHF6) protein in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. Their findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition.
Collapse
Affiliation(s)
- Yadira M Soto-Feliciano
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Jordan M E Bartlebaugh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Yunpeng Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Arjun Bhutkar
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Abraham S Weintraub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jason D Buenrostro
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Christine S Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Aviv Regev
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Tyler E Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard A Young
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|