1
|
Yuan H, Wang C, Liu L, Wang C, Zhang Z, Qu S. Association Between CTSK Gene Polymorphisms and Response to Alendronate Treatment in Postmenopausal Chinese Women with Low Bone Mineral Density. Pharmgenomics Pers Med 2023; 16:925-932. [PMID: 37920752 PMCID: PMC10619967 DOI: 10.2147/pgpm.s425357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Purpose The aim of this study was to explore the association between CTSK polymorphisms and the response to alendronate treatment in postmenopausal Chinese women with low bone mineral density. Patients and Methods In this study, 460 postmenopausal women from Shanghai were included. All of them were treated with weekly oral alendronate 70 mg, daily calcium 600 mg and vitamin D 125 IU for a year. Four tag single nucleotide polymorphisms (SNPs) in CTSK gene were genotyped. Bone mineral densities of lumbar spine (L1-L4), femoral neck and total hip were measured at baseline and after 12 months of treatment, respectively. Results After 1-year of treatment, there was no significant differences in BMI between baseline and follow-up. After alendronate treatment, the BMD of L1-4, femoral neck and total hip all increased significantly (all P < 0.001), with average increases of 4.33 ± 6.42%, 1.85 ± 4.20%, and 2.36 ± 3.79%, respectively. There was no significant difference in BMD at L1-L4, the femoral neck and total hip between different genotype groups at baseline (P>0.05). After 1-year treatment with alendronate, rs12746973 and rs10847 were associated with the % change of BMD at L1-L4 (P=0.038) and % change of BMD at femoral neck (P=0.038), respectively. Furthermore, rs10847 was associated with BMD response at femoral neck (P=0.013). However, the associations were not significant after Bonferroni correction. Conclusion We concluded that the common variations of CTSK gene were potentially associated with the therapeutic response to alendronate treatment in Chinese women with low bone mineral density. However, further validation is needed.
Collapse
Affiliation(s)
- Hu Yuan
- Department of Endocrinology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, People’s Republic of China
| | - Caihong Wang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, People’s Republic of China
| | - Li Liu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, 200233, People’s Republic of China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People’s Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
2
|
Wang WJ, He JW, Fu WZ, Wang C, Zhang ZL. Genetic Polymorphisms of Nuclear Factor-κB Family Affect the Bone Mineral Density Response to Zoledronic Acid Therapy in Postmenopausal Chinese Women. Genes (Basel) 2022; 13:genes13081343. [PMID: 36011257 PMCID: PMC9407517 DOI: 10.3390/genes13081343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/06/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to explore the allelic association between genetic polymorphisms of the NF-κB pathway and the variance of clinical effects of zoledronic in postmenopausal Chinese women with osteoporosis. In the study, 110 Chinese postmenopausal women with osteoporosis were recruited. Every patient received zoledronic once a year. BMD was measured at baseline and after one year of treatment. The 13 tagger SNPs of five genes in the NF-κB pathway were genotyped. In the study, 101 subjects completed the one-year follow-up. The ITCTG and DTCTG haplotypes, which are constituted of rs28362491, rs3774937, rs230521, rs230510 and rs4648068 of the NF-κB1 gene, were associated with improvement in BMD at L1-4 and femoral neck (p < 0.001, p = 0.008, respectively). The CGC haplotype, which is constituted of rs7119750, rs2306365 and rs11820062 of the RELA gene, was associated with improvement in BMD at total hip (p < 0.001). After Bonferroni correction, haplotypes ITCTG and CGC still showed significant association with the % change of BMD at L1-4 and total hip. Therefore, NF-κB1 and RELA gene were significantly associated with bone response to the treatment of zoledronic in postmenopausal Chinese women with osteoporosis.
Collapse
|
3
|
Vazquez-Villegas ML, Rodriguez-Jimenez NA, Contreras-Haro B, Vasquez-Jimenez JC, Perez-Guerrero EE, Moran-Moguel MC, Sánchez-Rodríguez EN, Villagómez-Vega A, Nuño-Arana I, Becerra-Alvarado IN, Rubio-Arellano ED, Nava-Valdivia CA, Ponce-Guarneros JM, Fajardo-Robledo NS, Nava-Zavala AH, Gonzalez-Lopez L, Saldaña-Cruz AM. Genotypic Analyses of the Sclerostin rs851056 and Dickkopf rs1569198 Polymorphisms in Mexican-Mestizo Postmenopausal Osteoporosis: A Case-Control Study. Genet Test Mol Biomarkers 2021; 25:211-217. [PMID: 33734895 DOI: 10.1089/gtmb.2020.0199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: The Wnt/β catenin pathway promotes bone mineralization stimulating proliferation, differentiation, and survival of osteoblasts; it also inhibits osteoclast differentiation and osteocyte activity. Sclerostin (SOST) and Dickkopf 1 (DKK1) are Wnt/β catenin pathway inhibitors. Genetic variability in the expression of SOST and DKK1 might be involved in the development of postmenopausal osteoporosis (OP). Aim: To determine whether the SOST rs851056 and DKK1 rs1569198 polymorphisms are associated with OP in Mexican-Mestizo postmenopausal women. Materials and Methods: Two hundred and eighty Mexican-Mestizo postmenopausal women were assessed for their bone mineral density by dual-energy X-ray absorptiometry (DXA). Patients were classified as OP or non-OP. Genomic DNA was extracted from peripheral blood leukocytes. Genetic polymorphisms were analyzed by quantitative polymerase chain reaction using TaqMan probes. Results: The frequency of OP was 40% among the study population. Osteoporotic patients were older (p < 0.001), had a higher frequency of smoking (p = 0.01), and lower body mass index (p < 0.001) compared with the non-osteoporotic patients. The genotypic frequencies of the rs851056 locus of the SOST gene were GG 19%, GC 45%, and CC 35%, whereas the genotypic frequencies of the rs1569198 locus of the DKK1 gene were GG 15%, GA 40%, and AA 44%. In relation to rs851056 locus of the SOST gene, no differences were observed between the OP and non-OP cohorts in the frequencies of the GC polymorphism (48.7% vs. 43.1%). Similarly, analyses of the DKK1 rs1569198 does not demonstrate differences in the GA genotypic frequencies between the OP and non-OP cohorts (42.5% vs. 38.9%). Conclusion: Polymorphisms SOST rs851056 and DKK1 rs1569198 polymorphisms are not associated with OP in Mexican-Mestizo postmenopausal women.
Collapse
Affiliation(s)
- Maria L Vazquez-Villegas
- Departamento de Salud Pública, Instituto Regional de Investigación en Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México.,Departamento de Epidemiologia, Unidad de Medicina Familiar N°, 4, Instituto Mexicano del Seguro Social (IMSS), Guadalajara, México
| | - Norma A Rodriguez-Jimenez
- Departamento de Fisiología, Instituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Betsabe Contreras-Haro
- Departamento de Ciencias Biomedicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá, México
| | - Jose C Vasquez-Jimenez
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Edsaul E Perez-Guerrero
- Departamento de Biología Molecular, Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Maria-Cristina Moran-Moguel
- Departamento de Disciplinas Fisiológico, Metodológico e Instrumental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Esther N Sánchez-Rodríguez
- Departamento de Fisiología, Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Alejandra Villagómez-Vega
- Departamento de Fisiología, Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Ismael Nuño-Arana
- Instituto de Investigación en Genética Molecular, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, México
| | - Itzel N Becerra-Alvarado
- Departamento de Fisiología, Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Edy D Rubio-Arellano
- Departamento de Fisiología, Instituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Cesar A Nava-Valdivia
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Juan M Ponce-Guarneros
- Departamento de Fisiología, Instituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Nicte S Fajardo-Robledo
- Laboratorio de Investigación y Desarrollo Farmacéutico, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Arnulfo H Nava-Zavala
- Unidad de Investigación Biomédica 02, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México.,Programa Internacional Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan, México.,División de Medicina Interna, Servicio de Inmunología y Reumatología, Hospital General de Occidente, Secretaria de Salud Jalisco, Zapopan, México
| | - Laura Gonzalez-Lopez
- Departamento de Fisiología, Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México.,Departamento de Salud Pública, Doctorado en Salud Pública, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Ana M Saldaña-Cruz
- Departamento de Fisiología, Instituto de Terapéutica Experimental y Clínica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
4
|
CIUBEAN AD, IRSAY L, UNGUR RA, CIORTEA VM, BORDA IM, DOGARU BG, TRIFA AP, BUZOIANU AD. Genetic polymorphisms and their influence on therapeutic response to alendronate-a pilot study. BALNEO RESEARCH JOURNAL 2019. [DOI: 10.12680/balneo.2019.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Osteoporosis has a strong genetic contribution, and several genes have been shown to influence bone mineral density. Variants in the human genome are considered important causes of differences in drug responses observed in clinical practice. In terms of bone mineral density, about 26–53% of patients do not respond to amino-bisphosphonate therapies, of which alendronate is the most widely used.
Material and method: The current study is prospective, observational, analytical, longitudinal and cohort type. It included 25 postmenopausal women treated with alendronate for 1 year. Bone mineral density at lumbar spine and proximal femur was measured and bone turnover markers (C-terminal telopeptide of type I collagen and procollagen 1N-terminal propeptide) were evaluated at 0 and 12 months of treatment. Six single nucleotide polymorphisms in osteoporosis-candidate genes were genotyped (FDPS rs2297480, LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438, GGPS1 rs10925503 and RANKL rs2277439). Treatment response was evaluated by percentage changes in bone mineral density and bone turnover markers.
Results: The heterozygous CT of FDPS rs2297480 showed lower increases in BMD values in the lumbar spine region and the homozygous CC of the GGPS1 rs10925503 showed lower increases in terms of BMD at the total hip region. No association was found for LRP5 rs3736228, SOST rs1234612, VKORC1 rs9934438 and RANKL rs2277439.
Conclusions: Romanian postmenopausal women with osteoporosis carrying the CT genotype of FDPS rs2297480 or the CC genotype of GGPS1 rs10925503 could have an unsatisfactory response to alendronate treatment.
Key words: osteoporosis; genetic polymorphism; alendronate; bone mineral density; bone turnover markers,
Collapse
Affiliation(s)
- Alina Deniza CIUBEAN
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Laszlo IRSAY
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Rodica Ana UNGUR
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Viorela Mihaela CIORTEA
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Ileana Monica BORDA
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Bombonica Gabriela DOGARU
- 1. University of Medicine and Pharmacy “ Iuliu Hațieganu”, Department of Rehabilitation Medicine, Cluj-Napoca, Romania
| | - Adrian Pavel TRIFA
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Genetics, Cluj-Napoca, Romania
| | - Anca Dana BUZOIANU
- University of Medicine and Pharmacy“ Iuliu Hațieganu”, Department of Pharmacology, Toxicology and Clinical Pharmacology, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Wang ZM, Luo JQ, Xu LY, Zhou HH, Zhang W. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. THE PHARMACOGENOMICS JOURNAL 2018; 18:351-358. [PMID: 28696417 DOI: 10.1038/tpj.2017.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Wnt signaling regulates a broad variety of processes in both embryonic development and various diseases. Recent studies indicated that some genetic variants in Wnt signaling pathway may serve as predictors of diseases. Low-density lipoprotein receptor protein 6 (LRP6) is a Wnt co-receptor with essential functions in the Wnt/β-catenin pathway, and mutations in LRP6 gene are linked to many complex human diseases, including metabolic syndrome, cancer, Alzheimer's disease and osteoporosis. Therefore, we focus on the role of LRP6 genetic polymorphisms and Wnt signaling in complex diseases, and the mechanisms from mouse models and cell lines. It is also highly anticipated that LRP6 variants will be applied clinically in the future. The brief review provided here could be a useful resource for future research and may contribute to a more accurate diagnosis in complex diseases.
Collapse
Affiliation(s)
- Z-M Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - J-Q Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - L-Y Xu
- Department of Epidemiology and Statistics, School of Public Health, Central South University, Changsha, Hunan, China
| | - H-H Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| | - W Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan, China
| |
Collapse
|