1
|
Wienhold J, Rayatdoost F, Schöchl H, Grottke O. Antidote vs. unspecific hemostatic agents for the management of direct oral anticoagulant-related bleeding in trauma. Curr Opin Anaesthesiol 2024; 37:101-109. [PMID: 38390922 DOI: 10.1097/aco.0000000000001349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
PURPOSE OF REVIEW The advent of direct oral anticoagulants (DOACs) marks a significant milestone in anticoagulant treatment. However, DOACs can exacerbate bleeding, which is challenging for the treating clinician, especially when combined with traumatic injury. RECENT FINDINGS In major bleeding associated with DOACs, rapid reversal of the anticoagulant effects is crucial. Recent observational and nonrandomized interventional trials have demonstrated the effectiveness of the specific antidotes andexanet alfa and idarucizumab as well as the unspecific prothrombin complex concentrates (PCCs) to counteract the anticoagulant effects of DOACs. The European Society of Anaesthesiology and Intensive Care guideline for severe perioperative bleeding and the European trauma guideline propose divergent recommendations for the use of andexanet alfa and PCC to obtain hemostasis in Factor Xa inhibitor-related bleeding. The conflicting recommendations are due to limited evidence from clinical studies and the potential increased risk of thromboembolic complications after the administration of andexanet. Regarding dabigatran-associated major bleeding, both guidelines recommend the specific reversal agent idarucizumab as first-line therapy. SUMMARY Current guidelines recommend specific antidots and PCCs in DOAC-related major bleeding. Prospective randomized trials comparing specific vs. nonspecific hemostatic agents in the perioperative setting are needed to evaluate the effectiveness and safety of the hemostatic agents.
Collapse
Affiliation(s)
- Jan Wienhold
- Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Farahnaz Rayatdoost
- Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Herbert Schöchl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
| | - Oliver Grottke
- Department of Anaesthesiology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
2
|
Brlek P, Bulić L, Bračić M, Projić P, Škaro V, Shah N, Shah P, Primorac D. Implementing Whole Genome Sequencing (WGS) in Clinical Practice: Advantages, Challenges, and Future Perspectives. Cells 2024; 13:504. [PMID: 38534348 PMCID: PMC10969765 DOI: 10.3390/cells13060504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
The integration of whole genome sequencing (WGS) into all aspects of modern medicine represents the next step in the evolution of healthcare. Using this technology, scientists and physicians can observe the entire human genome comprehensively, generating a plethora of new sequencing data. Modern computational analysis entails advanced algorithms for variant detection, as well as complex models for classification. Data science and machine learning play a crucial role in the processing and interpretation of results, using enormous databases and statistics to discover new and support current genotype-phenotype correlations. In clinical practice, this technology has greatly enabled the development of personalized medicine, approaching each patient individually and in accordance with their genetic and biochemical profile. The most propulsive areas include rare disease genomics, oncogenomics, pharmacogenomics, neonatal screening, and infectious disease genomics. Another crucial application of WGS lies in the field of multi-omics, working towards the complete integration of human biomolecular data. Further technological development of sequencing technologies has led to the birth of third and fourth-generation sequencing, which include long-read sequencing, single-cell genomics, and nanopore sequencing. These technologies, alongside their continued implementation into medical research and practice, show great promise for the future of the field of medicine.
Collapse
Affiliation(s)
- Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
| | - Matea Bračić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
| | - Petar Projić
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
| | | | - Nidhi Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Parth Shah
- Dartmouth Hitchcock Medical Center, Lebannon, NH 03766, USA
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (P.B.)
- International Center for Applied Biological Research, 10000 Zagreb, Croatia
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- REGIOMED Kliniken, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- National Forensic Sciences University, Gujarat 382007, India
| |
Collapse
|
3
|
Kasimova A, Labutin D, Gvozdetsky A, Bozhkova S. Association of ABCB1 gene polymorphisms rs1128503, rs2032582, rs4148738 with anemia in patients receiving dabigatran after total knee arthroplasty. Chin J Traumatol 2024; 27:27-33. [PMID: 37423837 PMCID: PMC10859282 DOI: 10.1016/j.cjtee.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Abstract
PURPOSE Dabigatran is usually prescribed in recommended doses without monitoring of the blood coagulation for the prevention of venous thromboembolism after joint arthroplasty. ABCB1 is a key gene in the metabolism of dabigatran etexilate. Its allele variants are likely to play a pivotal role in the occurrence of hemorrhagic complications. METHODS The prospective study included 127 patients with primary knee osteoarthritis undergoing total knee arthroplasty. Patients with anemia and coagulation disorders, elevated transaminase and creatinine levels as well as already receiving anticoagulant and antiplatelet therapy were excluded from the study. The association of ABCB1 gene polymorphisms rs1128503, rs2032582, rs4148738 with anemia as the outcome of dabigatran therapy was evaluated by single-nucleotide polymorphism analysis with a real-time polymerase chain reaction assay and laboratory blood tests. The beta regression model was used to predict the effect of polymorphisms on the studied laboratory markers. The probability of the type 1 error (p) was less than 0.05 was considered statistically significant. BenjaminiHochberg was used to correct for significance levels in multiple hypothesis tests. All calculations were performed using Rprogramming language v3.6.3. RESULTS For all polymorphisms there was no association with the level of platelets, protein, creatinine, alanine transaminase, prothrombin, international normalized ratio, activated partial thromboplastin time and fibrinogen. Carriers of rs1128503 (TT) had a significant decrease of hematocrit (p = 0.001), red blood count and hemoglobin (p = 0.015) while receiving dabigatran therapy during the postoperative period compared to the CC, CT. Carriers of rs2032582 (TT) had a significant decrease of hematocrit (p = 0.001), red blood count and hemoglobin (p = 0.006) while receiving dabigatran therapy during the postoperative period compared to the GG, GT phenotypes. These differences were not observed in carriers of rs4148738. CONCLUSION It might be necessary to reconsider thromboprophylaxis with dabigatran in carriers of rs1128503 (TT) or rs2032582 (TT) polymorphisms in favor of other new oral anticoagulants. The long-term implication of these findings would be the reduction of bleeding complications after total joint arthroplasty.
Collapse
Affiliation(s)
- Alina Kasimova
- Division of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopaedics, St. Petersburg, Russian Federation; Department of Clinical Pharmacology and Evidence-based Medicine, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russian Federation.
| | - Dmitry Labutin
- Division of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopaedics, St. Petersburg, Russian Federation
| | - Anton Gvozdetsky
- Department of Psychiatry and Addictology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russian Federation
| | - Svetlana Bozhkova
- Division of Wound Infection Prevention and Treatment, Vreden National Medical Research Center of Traumatology and Orthopaedics, St. Petersburg, Russian Federation
| |
Collapse
|
4
|
Matišić V, Brlek P, Bulić L, Molnar V, Dasović M, Primorac D. Population Pharmacogenomics in Croatia: Evaluating the PGx Allele Frequency and the Impact of Treatment Efficiency. Int J Mol Sci 2023; 24:13498. [PMID: 37686303 PMCID: PMC10487565 DOI: 10.3390/ijms241713498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Adverse drug reactions (ADRs) are a significant cause of mortality, and pharmacogenomics (PGx) offers the potential to optimize therapeutic efficacy while minimizing ADRs. However, there is a lack of data on the Croatian population, highlighting the need for investigating the most common alleles, genotypes, and phenotypes to establish national guidelines for drug use. METHODS A single-center retrospective cross-sectional study was performed to examine the allele, genotype, and phenotype frequencies of drug-metabolizing enzymes, receptors, and other proteins in a random sample of 522 patients from Croatia using a 28-gene PGx panel. RESULTS Allele frequencies, genotypes, and phenotypes for the investigated genes were determined. No statistically significant differences were found between the Croatian and European populations for most analyzed genes. The most common genotypes observed in the patients resulted in normal metabolism rates. However, some genes showed higher frequencies of altered metabolism rates. CONCLUSIONS This study provides insights into the allele, genotype, and phenotype frequencies of drug-metabolizing enzymes, receptors, and other associated proteins in the Croatian population. The findings contribute to optimizing drug use guidelines, potentially reducing ADRs, and improving therapeutic efficacy. Further research is needed to tailor population-specific interventions based on these findings and their long-term benefits.
Collapse
Affiliation(s)
- Vid Matišić
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
| | - Petar Brlek
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Luka Bulić
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.D.)
| | - Vilim Molnar
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
| | - Marina Dasović
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (L.B.); (M.D.)
| | - Dragan Primorac
- St Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (P.B.); (V.M.)
- School of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School REGIOMED, 96450 Coburg, Germany
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
- National Forensic Sciences University, Gujarat 382007, India
| |
Collapse
|
5
|
Shi J, Wu T, Wu S, Chen X, Ye Q, Zhang J. Effect of Genotype on the Pharmacokinetics and Bleeding Events of Direct Oral Anticoagulants: A Systematic Review and Meta-analysis. J Clin Pharmacol 2023; 63:277-287. [PMID: 36309848 DOI: 10.1002/jcph.2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
This meta-analysis aimed to investigate the effect of the genotype on the pharmacokinetics and bleeding events of direct oral anticoagulants (DOACs) and comprehensively searched electronic databases. Weighted mean difference (WMD) was used to assess the kinetic indicators, odds ratio, and 95% confidence interval (CI) were used to calculate the clinical outcomes. Thirteen articles with 1543 participants were finally included in this study. The peak concentration (Cmax ) and area under the plasma concentration-time curve from time 0 to infinity of individuals with the ABCB1 rs 1045642 CT + TT were higher than that of the CC (WMD = -31.9, 95% CI [-49.94, -12.24], P = .02; WMD = -79.97, 95%CI [-152.38 to -7.56], P = .03, I2 = 0). The Cmax of individuals with mutated genes in ABCB1 2677-3435 is higher than that the wild type (WMD = -19.20, 95%CI [36.62 to -1.79], P = .03, I2 = 0). Carriers of the CYP3A5 rs776746 GG genotype had a higher Cmax than the GA gene (WMD = -51.22, 95%CI [-92.26 to -10.19], P = .01, I2 = 0). Bleeding events were more common in the CES1 rs 2244613 AA + AC than in the CC (odds ratio, 2.62, 95%CI [1.06, 6.47], P = .04; I2 = 0). The Cmax of DOACs was affected by individuals with ABCB1 rs 1045642, ABCB1 2677-343, and cytochrome P450 3A5 rs 776746. Carriers of the ABCB1 rs 1045642 affected the change of area under the plasma concentration-time curve from time 0 to infinity of DOACs. Bleeding events were affected by CES1 rs 2244613.
Collapse
Affiliation(s)
- Jinying Shi
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University, Fuzhou, China
| | - Tingting Wu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Shuyi Wu
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.,Fujian Medical University, Fuzhou, China
| | | | - Qin Ye
- Department of Ultrasound, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Institute of Ultrasonic Medicine, Fuzhou, China
| | - Jinhua Zhang
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Xiang Q, Xie Q, Liu Z, Mu G, Zhang H, Zhou S, Wang Z, Wang Z, Zhang Y, Zhao Z, Yuan D, Guo L, Wang N, Xiang J, Song H, Sun J, Jiang J, Cui Y. Genetic variations in relation to bleeding and pharmacodynamics of dabigatran in Chinese patients with nonvalvular atrial fibrillation: A nationwide multicentre prospective cohort study. Clin Transl Med 2022; 12:e1104. [PMID: 36453946 PMCID: PMC9714378 DOI: 10.1002/ctm2.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION To identify the potential factors responsible for the individual variability of dabigatran, we investigated the genetic variations associated with clinical outcomes and pharmacodynamics (PD) in Chinese patients with nonvalvular atrial fibrillation (NVAF). MATERIALS AND METHODS Chinese patients with NVAF taking dabigatran etexilate with therapeutic doses were enrolled. The primary (bleeding events) and secondary (thromboembolic and major adverse cardiac events) outcomes for a 2-year follow-up were evaluated. Peak and trough PD parameters (anti-FIIa activity, activated partial thromboplastin time and prothrombin time) were detected. Whole-exome sequencing, genome-wide sequencing and candidate gene association analyses were performed. RESULTS There were 170 patients with NVAF treated with dabigatran (110 mg twice daily) who were finally included. Two single-nucleotide polymorphisms (SNPs) were significantly related with bleeding, which include UBASH3B rs2276408 (odds ratio [OR] = 8.79, 95% confidence interval [CI]: 2.99-25.83, p = 7.77 × 10-5 at sixth month visit) and FBN2 rs3805625 (OR = 8.29, 95% CI: 2.87-23.89, p = 9.08 × 10-5 at 12th month visit), as well as with increased trends at other visits (p < .05). Furthermore, minor allele carriers of 16 new SNPs increased PD levels, and those of one new SNP decreased PD values (p < 1.0 × 10-5 ). Lastly, 33 new SNPs were found to be associated with bleeding and PD among 14 candidate genes. Unfortunately, the low number of secondary outcomes precluded further association analyses. CONCLUSIONS Genetic variations indeed affected bleeding and PD in Chinese patients with NVAF treated with dabigatran. The functions of these suggestive genes and SNPs might further be explored and verified in more in vivo and in vitro investigations.
Collapse
Affiliation(s)
- Qian Xiang
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Qiufen Xie
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Zhiyan Liu
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Guangyan Mu
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Hanxu Zhang
- Department of PharmacyPeking University First HospitalBeijingChina
- School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Shuang Zhou
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Zhe Wang
- Department of PharmacyPeking University First HospitalBeijingChina
- School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
| | - Zining Wang
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Yatong Zhang
- Department of PharmacyBeijing HospitalBeijingChina
| | - Zinan Zhao
- Department of PharmacyBeijing HospitalBeijingChina
| | - Dongdong Yuan
- Department of PharmacyZhengzhou Seventh People's HospitalZhengzhouChina
| | - Liping Guo
- Department of PharmacyZhengzhou Seventh People's HospitalZhengzhouChina
| | - Na Wang
- Department of PharmacyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jing Xiang
- Department of PharmacyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hongtao Song
- Department of Pharmacy900 Hospital of the Joint Logistics TeamFuzhouChina
| | - Jianjun Sun
- Department of PharmacyThe Affiliated Hospital of Inner Mongolia Medical UniversityHuhehaoteChina
| | - Jie Jiang
- Department of CardiologyPeking University First HospitalBeijingChina
| | - Yimin Cui
- Department of PharmacyPeking University First HospitalBeijingChina
- School of Pharmaceutical SciencesPeking University Health Science CenterBeijingChina
- Institute of Clinical PharmacologyPeking UniversityBeijingChina
| |
Collapse
|
7
|
Attelind S, Hallberg P, Wadelius M, Hamberg AK, Siegbahn A, Granger CB, Lopes RD, Alexander JH, Wallentin L, Eriksson N. Genetic determinants of apixaban plasma levels and their relationship to bleeding and thromboembolic events. Front Genet 2022; 13:982955. [PMID: 36186466 PMCID: PMC9515473 DOI: 10.3389/fgene.2022.982955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Apixaban is a direct oral anticoagulant, a factor Xa inhibitor, used for the prevention of ischemic stroke in patients with atrial fibrillation. Despite using recommended dosing a few patients might still experience bleeding or lack of efficacy that might be related to inappropriate drug exposure. We conducted a genome-wide association study using data from 1,325 participants in the pivotal phase three trial of apixaban with the aim to identify genetic factors affecting the pharmacokinetics of apixaban. A candidate gene analysis was also performed for pre-specified variants in ABCB1, ABCG2, CYP3A4, CYP3A5, and SULT1A1, with a subsequent analysis of all available polymorphisms within the candidate genes. Significant findings were further evaluated to assess a potential association with clinical outcome such as bleeding or thromboembolic events. No variant was consistently associated with an altered apixaban exposure on a genome-wide level. The candidate gene analyses showed a statistically significant association with a well-known variant in the drug transporter gene ABCG2 (c.421G > T, rs2231142). Patients carrying this variant had a higher exposure to apixaban [area under the curve (AUC), beta = 151 (95% CI 59–243), p = 0.001]. On average, heterozygotes displayed a 5% increase of AUC and homozygotes a 17% increase of AUC, compared with homozygotes for the wild-type allele. Bleeding or thromboembolic events were not significantly associated with ABCG2 rs2231142. This large genome-wide study demonstrates that genetic variation in the drug transporter gene ABCG2 is associated with the pharmacokinetics of apixaban. However, the influence of this finding on drug exposure was small, and further studies are needed to better understand whether it is of relevance for ischemic and bleeding events.
Collapse
Affiliation(s)
- Sofia Attelind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- *Correspondence: Mia Wadelius,
| | | | - Agneta Siegbahn
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University Hospital, Uppsala, Sweden
| | | | - Renato D. Lopes
- Duke Clinical Research Institute, Duke Medicine, Durham, NC, United States
| | - John H. Alexander
- Duke Clinical Research Institute, Duke Medicine, Durham, NC, United States
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University Hospital, Uppsala, Sweden
| | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
8
|
Roguljić H, Arambašić J, Ninčević V, Kuna L, Šesto I, Tabll A, Smolić R, Včev A, Primorac D, Wu GY, Smolić M. The role of direct oral anticoagulants in the era of COVID-19: are antiviral therapy and pharmacogenetics limiting factors? Croat Med J 2022; 63:287-294. [PMID: 35722697 PMCID: PMC9284020 DOI: 10.3325/cmj.2022.63.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022] Open
Abstract
In patients with COVID-19, thromboinflammation is one of the main causes of morbidity and mortality, which makes anticoagulation an integral part of treatment. However, pharmacodynamic and pharmacokinetic properties of direct oral anticoagulants (DOACs) limit the use of this class of anticoagulants in COVID-19 patients due to a significant interference with antiviral agents. DOACs use in COVID-19 hospitalized patients is currently not recommended. Furthermore, patients already on oral anticoagulant drugs should be switched to heparin at hospital admission. Nevertheless, outpatients with a confirmed diagnosis of COVID-19 are recommended to continue prior DOAC therapy. More studies are required to clarify the pathogenesis of COVID-19-induced derangement of the coagulation system in order to recommend an appropriate anticoagulant treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Martina Smolić
- Martina Smolić, Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia,
| |
Collapse
|
9
|
Xie Q, Li Y, Liu Z, Mu G, Zhang H, Zhou S, Wang Z, Wang Z, Jiang J, Li X, Xiang Q, Cui Y. SLC4A4, FRAS1, and SULT1A1 Genetic Variations Associated With Dabigatran Metabolism in a Healthy Chinese Population. Front Genet 2022; 13:873031. [PMID: 35646073 PMCID: PMC9136018 DOI: 10.3389/fgene.2022.873031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: The purpose of this study was to identify genetic variations associated with the metabolism of dabigatran in healthy Chinese subjects, with particular focus given to pharmacokinetics (PK) and pharmacodynamics (PD).Methods: Healthy Chinese adults aged 18–65 years with unknown genotypes from a bioequivalence trial were included according to the protocol registered at ClinicalTrial.org (NCT03161496). All subjects received a single dose (150 mg) of dabigatran etexilate. PK (main outcomes: area under the concentration-time, AUC0-t, of total and free dabigatran) and PD (main outcomes: anti-FIIa activity, APTT, and PT) parameters were evaluated. Whole-exome sequencing and genome-wide association analyses were performed. Additionally, candidate gene association analyses related to dabigatran were conducted.Results: A total of 118 healthy Chinese subjects were enrolled in this study. According to the p-value suggestive threshold (1.0 × 10−4), the following three SNPs were found to be associated with the AUC0–t of total dabigatran: SLC4A4 SNP rs138389345 (p = 5.99 × 10−5), FRAS1 SNP rs6835769 (p = 6.88 × 10−5), and SULT1A1 SNP rs9282862 (p = 7.44 × 10−5). Furthermore, these SNPs were also found to have significant influences on the AUC0–t of free dabigatran, maximum plasma concentration, and anti-FIIa activity (p < 0.05). Moreover, we identified 30 new potential SNPs of 13 reported candidate genes (ABCB1, ABCC2, ABCG2, CYP2B6, CYP1A2, CYP2C19, CYP3A5, CES1, SLCO1B1, SLC22A1, UGT1A1, UGT1A9, and UGT2B7) that were associated with drug metabolism.Conclusion: Genetic variations were indeed found to impact dabigatran metabolism in a population of healthy Chinese subjects. Further research is needed to explore the more detailed functions of these SNPs. Additionally, our results should be verified in studies that use larger sample sizes and investigate other ethnicities.
Collapse
Affiliation(s)
- Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| |
Collapse
|
10
|
Babayeva M, Azzi B, Loewy ZG. Pharmacogenomics Informs Cardiovascular Pharmacotherapy. Methods Mol Biol 2022; 2547:201-240. [PMID: 36068466 DOI: 10.1007/978-1-0716-2573-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Precision medicine exemplifies the emergence of personalized treatment options which may benefit specific patient populations based upon their genetic makeup. Application of pharmacogenomics requires an understanding of how genetic variations impact pharmacokinetic and pharmacodynamic properties. This particular approach in pharmacotherapy is helpful because it can assist in and improve clinical decisions. Application of pharmacogenomics to cardiovascular pharmacotherapy provides for the ability of the medical provider to gain critical knowledge on a patient's response to various treatment options and risk of side effects.
Collapse
Affiliation(s)
| | | | - Zvi G Loewy
- Touro College of Pharmacy, New York, NY, USA.
- School of Medicine, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
11
|
Palmirotta R. Direct Oral Anticoagulants (DOAC): Are We Ready for a Pharmacogenetic Approach? J Pers Med 2021; 12:17. [PMID: 35055332 PMCID: PMC8777772 DOI: 10.3390/jpm12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Anticoagulants play an important role in reducing complications and mortality associated with thromboembolic disorders, and anticoagulant therapy has been progressively enriched over the last few years with numerous new options [...].
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
12
|
Wang Y, Chen M, Chen H, Wang F. Influence of ABCB1 Gene Polymorphism on Rivaroxaban Blood Concentration and Hemorrhagic Events in Patients With Atrial Fibrillation. Front Pharmacol 2021; 12:639854. [PMID: 33935730 PMCID: PMC8079976 DOI: 10.3389/fphar.2021.639854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Genetic data on the pharmacokinetics of rivaroxaban and identification of factors that affect its biotransformation, distribution, and excretion will allow for generation of algorithms for personalized use of this drug in patients with atrial fibrillation (AF). Here we tested the effects of ABCB1 (ATP-binding cassette subfamily B member 1) polymorphisms on the valley rivaroxaban blood concentration and on the frequency of hemorrhagic events in patients with AF and propose a personal anticoagulation therapy management protocol. Patients and Methods: This is a retrospective study. We enrolled Mongolian descent patients who met the criteria from May 2018 to August 2019 in Beijing and Fujian. Clinical data on gender, height, weight, liver and kidney functions, drug trough concentration, and drug dosage were collected; we recorded the bleeding events until 6 months after initiating the medication. ABCB1 single nucleotide polymorphisms including rs1128503, rs1045642, and rs4148738 were identified. After reaching the steady state of plasma concentration, the peripheral blood was collected to detect the trough rivaroxaban plasma concentrations before the next medication. Results: We included 155 patients in this study including 81 men and 74 women, with an average age of 71.98 ± 10.72 years. The distribution of ABCB1 genotypes conformed to the Hardy-Weinberg equilibrium. Multiple comparisons between wild (TT) and mutant (CT and CC) genotypes at the rs1045642 locus showed no significant differences of rivaroxaban trough concentrations (TT vs. CT, p = 0.586; TT vs. CC, p = 0.802; and CT vs. CC, p = 0.702). Multiple comparison between wild (TT) and mutant (CC) genotypes at the rs1128503 locus revealed a significant difference of rivaroxaban trough concentrations (TT vs. CC, p = 0.0421). But wild (TT) vs mutant (CT) genotypes and mutant CT vs mutant CC genotypes at the rs1128503 locus showed no significant differences of rivaroxaban trough concentrations (TT vs. CT, p = 0.0651; TT vs. CT, p = 0.6127). Multiple comparisons between wild (GG) and mutant (AG and AA) genotypes at the rs4148738 locus showed no significant differences of rivaroxaban trough concentrations (GG vs. AG, p = 0.341; GG vs. AA, p = 0.612; AG vs. AA, p = 0.649). There was no significant correlation between ABCB1 gene variation loci rs1045642, rs1128503, rs4148738 and bleeding events. Conclusion: rs1128503 locus variations are correlated with the serum concentration of rivaroxaban in patients of Mongolian descent. But no significant correlation between rs1128503 locus variations and bleeding events were obtained.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Laboratory of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Min Chen
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Cardiology, Fujian Provincial Clinical College of Fujian Medical University, Fuzhou, China
| | - Fang Wang
- Department of Cardiovascular Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Laboratory of Cardiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| |
Collapse
|
13
|
Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med 2021; 11:jpm11010037. [PMID: 33440670 PMCID: PMC7826504 DOI: 10.3390/jpm11010037] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Dabigatran, rivaroxaban, apixaban, edoxaban, and betrixaban are direct oral anticoagulants (DOACs). Their inter-individual variability in pharmacodynamics and pharmacokinetics (transport and metabolism) is high, and could result from genetic polymorphisms. As recommended by the French Network of Pharmacogenetics (RNPGx), the management of some treatments in cardiovascular diseases (as antiplatelet agents, oral vitamin K antagonists, and statins) can rely on genetic testing in order to improve healthcare by reducing therapeutic resistance or toxicity. This paper is a review of association studies between single nucleotide polymorphisms (SNPs) and systemic exposure variation of DOACs. Most of the results presented here have a lot to do with some SNPs of CES1 (rs2244613, rs8192935, and rs71647871) and ABCB1 (rs1128503, rs2032582, rs1045642, and rs4148738) genes, and dabigatran, rivaroxaban, and apixaban. Regarding edoxaban and betrixaban, as well as SNPs in the CYP3A4 and CYP3A5 genes, literature is scarce, and further studies are needed.
Collapse
|
14
|
Primorac D, Bach-Rojecky L, Vađunec D, Juginović A, Žunić K, Matišić V, Skelin A, Arsov B, Boban L, Erceg D, Ivkošić IE, Molnar V, Ćatić J, Mikula I, Boban L, Primorac L, Esquivel B, Donaldson M. Pharmacogenomics at the center of precision medicine: challenges and perspective in an era of Big Data. Pharmacogenomics 2020; 21:141-156. [PMID: 31950879 DOI: 10.2217/pgs-2019-0134] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pharmacogenomics (PGx) is one of the core elements of personalized medicine. PGx information reduces the likelihood of adverse drug reactions and optimizes therapeutic efficacy. St Catherine Specialty Hospital in Zagreb/Zabok, Croatia has implemented a personalized patient approach using the RightMed® Comprehensive PGx panel of 25 pharmacogenes plus Facor V Leiden, Factor II and MTHFR genes, which is interpreted by a special counseling team to offer the best quality of care. With the advent of significant technological advances comes another challenge: how can we harness the data to inform clinically actionable measures and how can we use it to develop better predictive risk models? We propose to apply the principles artificial intelligence to develop a medication optimization platform to prevent, manage and treat different diseases.
Collapse
Affiliation(s)
- Dragan Primorac
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,University of Split School of Medicine, 21 000 Split, Croatia.,Eberly College of Science, 517 Thomas St, State College, Penn State University, PA 16803, USA.,The Henry C Lee College of Criminal Justice & Forensic Sciences, University of New Haven, West Haven, CT 06516, USA.,University of Osijek School of Medicine, 31000 Osijek, Croatia.,University of Rijeka School of Medicine, 51000 Rijeka, Croatia.,Srebrnjak Children's Hospital, 10000 Zagreb, Croatia.,University of Osijek Faculty of Dental Medicine & Health, 31000 Osijek, Croatia
| | - Lidija Bach-Rojecky
- University of Zagreb Faculty of Pharmacy & Biochemistry, 10000 Zagreb, Croatia
| | - Dalia Vađunec
- University of Zagreb Faculty of Pharmacy & Biochemistry, 10000 Zagreb, Croatia
| | - Alen Juginović
- University of Split School of Medicine, 21 000 Split, Croatia
| | | | - Vid Matišić
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Andrea Skelin
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,Genos Glycoscience Research Laboratory, 10000 Zagreb, Croatia
| | - Borna Arsov
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Luka Boban
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Damir Erceg
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,Srebrnjak Children's Hospital, 10000 Zagreb, Croatia.,University of Osijek Faculty of Dental Medicine & Health, 31000 Osijek, Croatia.,Croatian Catholic University, 10000 Zagreb, Croatia
| | - Ivana Erceg Ivkošić
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,University of Osijek Faculty of Dental Medicine & Health, 31000 Osijek, Croatia
| | - Vilim Molnar
- University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jasmina Ćatić
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,University of Osijek School of Medicine, 31000 Osijek, Croatia.,Clinical Hospital Dubrava, Department of Cardiology, 10000 Zagreb, Croatia
| | - Ivan Mikula
- St Catherine Specialty Hospital, 10000 Zagreb & 49210 Zabok, Croatia.,University North, Nursing Department, 42000 Varaždin, Croatia
| | | | - Lara Primorac
- Wharton Business School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Ašić A, Salazar R, Storm N, Doğan S, Höppner W, Marjanović D, Primorac D. Population study of thrombophilic markers and pharmacogenetic markers of warfarin prevalence in Bosnia and Herzegovina. Croat Med J 2019; 60:212-220. [PMID: 31187948 PMCID: PMC6563168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/03/2019] [Indexed: 10/13/2023] Open
Abstract
AIM To investigate the prevalence of common genetic variants that can serve as markers of thrombophilia and warfarin pharmacogenetics in Bosnia and Herzegovina. METHODS The study was performed between August and October 2017 on 130 healthy unrelated adult volunteers from Bosnian-Herzegovinian population sample. The prevalence of the following genetic variants was determined: F5 c.1601G>A (factor V Leiden), F2 c.*97G>A (factor II or prothrombin mutation), F13A1 (factor XIII) c.103G>T, MTHFR (methylenetetrahydrofolate reductase) c.665C>T and c.1286A>C, as well as PAI-1 (plasminogen activator inhibitor 1) c.-816A>G and c.-844G>A as markers of thrombophilia risk, and *2 and *3 alleles of CYP2C9 (cytochrome P450 2C9) and five variants of VKORC1 (vitamin K epoxide reductase complex subunit 1) as markers of warfarin pharmacogenetics. DNA was isolated from buccal swabs using salting out method, while genotyping was performed using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. RESULTS Minor allele frequencies for two main thrombophilia risk factors, F5 c.1601G>A and F2 c.*97G>A were 0.023 and 0.008, respectively. Combined data for the markers of warfarin pharmacogenetics imply that 57.4% study participants can be expected to metabolize warfarin at an extensive, 40.3% at intermediate, and 2.3% at a poor rate. CONCLUSION This study reports the first extensive population genetic data for thrombophilia and warfarin pharmacogenetic markers in Bosnia and Herzegovina. Allele frequencies of genetic variants are within the general average for European populations, and their presence implies the necessity of introduction of personalized medicine in warfarin-mediated antithrombotic therapy.
Collapse
Affiliation(s)
- Adna Ašić
- Adna Ašić, Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71210 Ilidža, Sarajevo, Bosnia and Herzegovina,
| | | | | | | | | | | | | |
Collapse
|
16
|
Pharmacokinetic and Pharmacodynamic Drug Monitoring of Direct-Acting Oral Anticoagulants: Where Do We Stand? Ther Drug Monit 2019; 41:180-191. [DOI: 10.1097/ftd.0000000000000594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Kanuri SH, Kreutz RP. Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants. J Pers Med 2019; 9:jpm9010007. [PMID: 30658513 PMCID: PMC6463033 DOI: 10.3390/jpm9010007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/24/2018] [Accepted: 01/11/2019] [Indexed: 01/01/2023] Open
Abstract
Direct oral anticoagulants (DOAC) have shown an upward prescribing trend in recent years due to favorable pharmacokinetics and pharmacodynamics without requirement for routine coagulation monitoring. However, recent studies have documented inter-individual variability in plasma drug levels of DOACs. Pharmacogenomics of DOACs is a relatively new area of research. There is a need to understand the role of pharmacogenomics in the interpatient variability of the four most commonly prescribed DOACs, namely dabigatran, rivaroxaban, apixaban, and edoxaban. We performed an extensive search of recently published research articles including clinical trials and in-vitro studies in PubMed, particularly those focusing on genetic loci, single nucleotide polymorphisms (SNPs), and DNA polymorphisms, and their effect on inter-individual variation of DOACs. Additionally, we also focused on commonly associated drug-drug interactions of DOACs. CES1 and ABCB1 SNPs are the most common documented genetic variants that contribute to alteration in peak and trough levels of dabigatran with demonstrated clinical impact. ABCB1 SNPs are implicated in alteration of plasma drug levels of rivaroxaban and apixaban. Studies conducted with factor Xa, ABCB1, SLCOB1, CYP2C9, and VKORC1 genetic variants did not reveal any significant association with plasma drug levels of edoxaban. Pharmacokinetic drug-drug interactions of dabigatran are mainly mediated by p-glycoprotein. Strong inhibitors and inducers of CYP3A4 and p-glycoprotein should be avoided in patients treated with rivaroxaban, apixaban, and edoxaban. We conclude that some of the inter-individual variability of DOACs can be attributed to alteration of genetic variants of gene loci and drug-drug interactions. Future research should be focused on exploring new genetic variants, their effect, and molecular mechanisms that contribute to alteration of plasma levels of DOACs.
Collapse
Affiliation(s)
- Sri H Kanuri
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Rolf P Kreutz
- Department of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Medicine, Krannert Institute of Cardiology, Indiana University School of Medicine, 1800 N. Capitol Ave, MPC2, ME-400, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Pirmohamed M. Warfarin: The End or the End of One Size Fits All Therapy? J Pers Med 2018; 8:jpm8030022. [PMID: 29958440 PMCID: PMC6163581 DOI: 10.3390/jpm8030022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Oral anticoagulants are required for both treatment and prophylaxis in many different diseases. Clinicians and patients now have a choice of oral anticoagulants, including the vitamin K antagonists (of which warfarin is the most widely used and is used as the exemplar in this paper), and direct oral anticoagulants (DOACs: dabigatran, apixaban, rivaroxaban, and edoxaban). This paper explores the recent advances and controversies in oral anticoagulation. While some commentators may favour a complete switchover to DOACs, this paper argues that warfarin still has a place in therapy, and a stratified approach that enables the correct choice of both drug and dose would improve both patient outcomes and affordability.
Collapse
Affiliation(s)
- Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool L69 3GL, UK.
| |
Collapse
|