1
|
Reina-Reina A, Barrera J, Maté A, Trujillo J, Valdivieso B, Gas ME. Developing an interpretable machine learning model for predicting COVID-19 patients deteriorating prior to intensive care unit admission using laboratory markers. Heliyon 2023; 9:e22878. [PMID: 38125502 PMCID: PMC10731083 DOI: 10.1016/j.heliyon.2023.e22878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Coronavirus disease (COVID-19) remains a significant global health challenge, prompting a transition from emergency response to comprehensive management strategies. Furthermore, the emergence of new variants of concern, such as BA.2.286, underscores the need for early detection and response to new variants, which continues to be a crucial strategy for mitigating the impact of COVID-19, especially among the vulnerable population. This study aims to anticipate patients requiring intensive care or facing elevated mortality risk throughout their COVID-19 infection while also identifying laboratory predictive markers for early diagnosis of patients. Therefore, haematological, biochemical, and demographic variables were retrospectively evaluated in 8,844 blood samples obtained from 2,935 patients before intensive care unit admission using an interpretable machine learning model. Feature selection techniques were applied using precision-recall measures to address data imbalance and evaluate the suitability of the different variables. The model was trained using stratified cross-validation with k=5 and internally validated, achieving an accuracy of 77.27%, sensitivity of 78.55%, and area under the receiver operating characteristic (AUC) of 0.85; successfully identifying patients at increased risk of severe progression. From a medical perspective, the most important features of the progression or severity of patients with COVID-19 were lactate dehydrogenase, age, red blood cell distribution standard deviation, neutrophils, and platelets, which align with findings from several prior investigations. In light of these insights, diagnostic processes can be significantly expedited through the use of laboratory tests, with a greater focus on key indicators. This strategic approach not only improves diagnostic efficiency but also extends its reach to a broader spectrum of patients. In addition, it allows healthcare professionals to take early preventive measures for those most at risk of adverse outcomes, thereby optimising patient care and prognosis.
Collapse
Affiliation(s)
- A. Reina-Reina
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - J.M. Barrera
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - A. Maté
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - J.C. Trujillo
- Lucentia Research. Department of Software and Computing System, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690, Alicante, Spain
- Lucentia Lab, Av. Pintor Pérez Gil, 16, 03540, Alicante, Spain
| | - B. Valdivieso
- The University and Polytechnic La Fe Hospital of Valencia, Avenida Fernando Abril Martorell, 106 Torre H 1st floor, 46026, Valencia, Spain
- The Medical Research Institute of Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre F 7th floor, 46026, Valencia, Spain
| | - María-Eugenia Gas
- The Medical Research Institute of Hospital La Fe, Avenida Fernando Abril Martorell, 106 Torre F 7th floor, 46026, Valencia, Spain
| |
Collapse
|
2
|
Mhatre I, Abdelhalim H, Degroat W, Ashok S, Liang BT, Ahmed Z. Functional mutation, splice, distribution, and divergence analysis of impactful genes associated with heart failure and other cardiovascular diseases. Sci Rep 2023; 13:16769. [PMID: 37798313 PMCID: PMC10556087 DOI: 10.1038/s41598-023-44127-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
Cardiovascular disease (CVD) is caused by a multitude of complex and largely heritable conditions. Identifying key genes and understanding their susceptibility to CVD in the human genome can assist in early diagnosis and personalized treatment of the relevant patients. Heart failure (HF) is among those CVD phenotypes that has a high rate of mortality. In this study, we investigated genes primarily associated with HF and other CVDs. Achieving the goals of this study, we built a cohort of thirty-five consented patients, and sequenced their serum-based samples. We have generated and processed whole genome sequence (WGS) data, and performed functional mutation, splice, variant distribution, and divergence analysis to understand the relationships between each mutation type and its impact. Our variant and prevalence analysis found FLNA, CST3, LGALS3, and HBA1 linked to many enrichment pathways. Functional mutation analysis uncovered ACE, MME, LGALS3, NR3C2, PIK3C2A, CALD1, TEK, and TRPV1 to be notable and potentially significant genes. We discovered intron, 5' Flank, 3' UTR, and 3' Flank mutations to be the most common among HF and other CVD genes. Missense mutations were less common among HF and other CVD genes but had more of a functional impact. We reported HBA1, FADD, NPPC, ADRB2, ADBR1, MYH6, and PLN to be consequential based on our divergence analysis.
Collapse
Affiliation(s)
- Ishani Mhatre
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Habiba Abdelhalim
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - William Degroat
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Shreya Ashok
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, UConn Health, 263 Farmington Ave, Farmington, CT, USA
- UConn School of Medicine, University of Connecticut, 263 Farmington Ave, Farmington, CT, USA
| | - Zeeshan Ahmed
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ, 08901, USA.
- Department of Genetics and Genome Sciences, UConn Health, 400 Farmington Ave, Farmington, CT, USA.
- Department of Medicine/Cardiovascular Disease and Hypertension, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA.
| |
Collapse
|
3
|
Vadapalli S, Abdelhalim H, Zeeshan S, Ahmed Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief Bioinform 2022; 23:6590150. [PMID: 35595537 DOI: 10.1093/bib/bbac191] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/02/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Precision medicine uses genetic, environmental and lifestyle factors to more accurately diagnose and treat disease in specific groups of patients, and it is considered one of the most promising medical efforts of our time. The use of genetics is arguably the most data-rich and complex components of precision medicine. The grand challenge today is the successful assimilation of genetics into precision medicine that translates across different ancestries, diverse diseases and other distinct populations, which will require clever use of artificial intelligence (AI) and machine learning (ML) methods. Our goal here was to review and compare scientific objectives, methodologies, datasets, data sources, ethics and gaps of AI/ML approaches used in genomics and precision medicine. We selected high-quality literature published within the last 5 years that were indexed and available through PubMed Central. Our scope was narrowed to articles that reported application of AI/ML algorithms for statistical and predictive analyses using whole genome and/or whole exome sequencing for gene variants, and RNA-seq and microarrays for gene expression. We did not limit our search to specific diseases or data sources. Based on the scope of our review and comparative analysis criteria, we identified 32 different AI/ML approaches applied in variable genomics studies and report widely adapted AI/ML algorithms for predictive diagnostics across several diseases.
Collapse
Affiliation(s)
- Sreya Vadapalli
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Habiba Abdelhalim
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ, USA
| | - Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy and Aging Research, Rutgers University, 112 Paterson St, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, 125 Paterson St, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Ahmed Z, Renart EG, Zeeshan S. Investigating underlying human immunity genes, implicated diseases and their relationship to COVID-19. Per Med 2022; 19:229-250. [PMID: 35261286 PMCID: PMC8919975 DOI: 10.2217/pme-2021-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aim: A human immunogenetics variation study was conducted in samples collected from diverse COVID-19 populations. Materials & methods: Whole-genome and whole-exome sequencing (WGS/WES), data processing, analysis and visualization pipeline were applied to identify variants associated with genes of interest. Results: A total of 2886 mutations were found across the entire set of 13 genomes. Functional annotation of the gene variants revealed mutation type and protein change. Many variants were found to be biologically implicated in COVID-19. The involvement of these genes was also found in multiple other diseases. Conclusion: The analysis determined that ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI had functional implications and TMPRSS4 was the gene most altered in virally infected patients. The quest to establish an understanding of the genetics underlying COVID-19 is a central focus of life sciences today. COVID-19 is triggered by SARS-CoV-2, a single-stranded RNA respiratory virus. Several clinical-genomics studies have emerged positing different human gene mutations occurring due to COVID-19. A global analysis of these genes was conducted targeting major components of the immune system to identify possible variations likely to be involved in COVID-19 predisposition. Gene-variant analysis was performed on whole-genome sequencing samples collected from diverse populations. ACE2, TMPRSS4, TMPRSS2, SLC6A20 and FYCOI were found to have functional implications and TMPRSS4 may have a role in the severity of clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Zeeshan Ahmed
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical & Health Sciences, 125 Paterson Street, New Brunswick, NJ 08901, USA
| | - Eduard Gibert Renart
- Rutgers Institute for Health, Health Care Policy & Aging Research, Rutgers University, 112 Paterson Street, New Brunswick, NJ 08901, USA
| | - Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, New Brunswick, NJ 08901, USA
| |
Collapse
|
5
|
Multi-omics strategies for personalized and predictive medicine: past, current, and future translational opportunities. Emerg Top Life Sci 2022; 6:215-225. [PMID: 35234253 DOI: 10.1042/etls20210244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Precision medicine is driven by the paradigm shift of empowering clinicians to predict the most appropriate course of action for patients with complex diseases and improve routine medical and public health practice. It promotes integrating collective and individualized clinical data with patient specific multi-omics data to develop therapeutic strategies, and knowledgebase for predictive and personalized medicine in diverse populations. This study is based on the hypothesis that understanding patient's metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic and predictive biomarkers and optimal paths providing personalized care for diverse and targeted chronic, acute, and infectious diseases. This study briefs emerging significant, and recently reported multi-omics and translational approaches aimed to facilitate implementation of precision medicine. Furthermore, it discusses current grand challenges, and the future need of Findable, Accessible, Intelligent, and Reproducible (FAIR) approach to accelerate diagnostic and preventive care delivery strategies beyond traditional symptom-driven, disease-causal medical practice.
Collapse
|
6
|
Ahmed Z. Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:101-125. [DOI: 10.1016/bs.pmbts.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|