1
|
Rosenbaum JN, Berry AB, Church AJ, Crooks K, Gagan JR, López-Terrada D, Pfeifer JD, Rennert H, Schrijver I, Snow AN, Wu D, Ewalt MD. A Curriculum for Genomic Education of Molecular Genetic Pathology Fellows: A Report of the Association for Molecular Pathology Training and Education Committee. J Mol Diagn 2021; 23:1218-1240. [PMID: 34245921 DOI: 10.1016/j.jmoldx.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022] Open
Abstract
Molecular genetic pathology (MGP) is a subspecialty of pathology and medical genetics and genomics. Genomic testing, which we define as that which generates large data sets and interrogates large segments of the genome in a single assay, is increasingly recognized as essential for optimal patient care through precision medicine. The most common genomic testing technologies in clinical laboratories are next-generation sequencing and microarray. It is essential to train in these methods and to consider the data generated in the context of the diagnosis, medical history, and other clinical findings of individual patients. Accordingly, updating the MGP fellowship curriculum to include genomics is timely, important, and challenging. At the completion of training, an MGP fellow should be capable of independently interpreting and signing out results of a wide range of genomic assays and, given the appropriate context and institutional support, of developing and validating new assays in compliance with applicable regulations. The Genomics Task Force of the MGP Program Directors, a working group of the Association for Molecular Pathology Training and Education Committee, has developed a genomics curriculum framework and recommendations specific to the MGP fellowship. These recommendations are presented for consideration and implementation by MGP fellowship programs with the understanding that MGP programs exist in a diversity of clinical practice environments with a spectrum of available resources.
Collapse
Affiliation(s)
- Jason N Rosenbaum
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna B Berry
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Swedish Cancer Institute and Institute of Systems Biology, Seattle, Washington
| | - Alanna J Church
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Kristy Crooks
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jeffrey R Gagan
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Dolores López-Terrada
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - John D Pfeifer
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Hanna Rennert
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Iris Schrijver
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anthony N Snow
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - David Wu
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Mark D Ewalt
- Molecular Genetic Pathology Fellow Training in Genomics Task Force of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
Ormond KE, O'Daniel JM, Kalia SS. Secondary findings: How did we get here, and where are we going? J Genet Couns 2019; 28:326-333. [DOI: 10.1002/jgc4.1098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/13/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Kelly E. Ormond
- Department of Genetics and Stanford Center for Biomedical Ethics; Stanford University School of Medicine; Stanford California
| | - Julianne M. O'Daniel
- Department of Genetics; University of North Carolina at Chapel Hill; Chapel Hill Carolina
| | - Sarah S. Kalia
- Department of Epidemiology; Harvard T.H. Chan School of Public Health; Boston Massachusetts
- Graduate School of Arts and Sciences; Harvard University; Cambridge Massachusetts
| |
Collapse
|
3
|
The Evolving Role of the Laboratory Professional in the Age of Genome Sequencing: A Vision of the Association for Molecular Pathology. J Mol Diagn 2015; 17:335-8. [PMID: 26047767 DOI: 10.1016/j.jmoldx.2015.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/06/2015] [Accepted: 03/10/2015] [Indexed: 01/19/2023] Open
Abstract
In conclusion, to maximize the benefit of the genomic era, the molecular laboratory director will continue to be essential in the generation, analysis, and interpretation of patient results, which now include genomic data obtained through NGS approaches. That includes integrating this information as part of the complete care of the patient and communicating and interacting with professionals across disciplines. In addition, the molecular laboratory director must continue to provide training and education to current and future colleagues, within and outside of molecular pathology and molecular genetics. Professionalism includes volunteerism in professional organizations and education and advocacy to policy makers, health administrators, payers, and the public. It also includes efforts to increase visibility of the profession to our colleagues from other medical disciplines and the public at large. Thus, the role of the molecular laboratory professional is multifaceted, but, above all, it is to ensure the access to and quality of molecular pathology testing, the responsible implementation of expanded test modalities such as genome sequencing, and the interpretation thereof to aid the clinician in the medical management of the patient and ultimately to benefit the society by providing precision patient care.
Collapse
|
4
|
Milner LC, Garrison NA, Cho MK, Altman RB, Hudgins L, Galli SJ, Lowe HJ, Schrijver I, Magnus DC. Genomics in the clinic: ethical and policy challenges in clinical next-generation sequencing programs at early adopter USA institutions. Per Med 2015; 12:269-282. [PMID: 29771644 DOI: 10.2217/pme.14.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Next-generation sequencing (NGS) technologies are poised to revolutionize clinical diagnosis and treatment, but raise significant ethical and policy challenges. This review examines NGS program challenges through a synthesis of published literature, website and conference presentation content, and interviews at early-adopting institutions in the USA. Institutions are proactively addressing policy challenges related to the management and technical aspects of program development. However, ethical challenges related to patient-related aspects have not been fully addressed. These complex challenges present opportunities to develop comprehensive and standardized regulations across programs. Understanding the strengths, weaknesses and current practices of evolving NGS program approaches are important considerations for institutions developing NGS services, policymakers regulating or funding NGS programs and physicians and patients considering NGS services.
Collapse
Affiliation(s)
- Lauren C Milner
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA, USA
| | - Nanibaa' A Garrison
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA, USA.,Center for Biomedical Ethics & Society, Departments of Pediatrics & Anthropology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mildred K Cho
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Russ B Altman
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Louanne Hudgins
- Division of Medical Genetics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen J Galli
- Stanford Center for Genomics & Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry J Lowe
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Iris Schrijver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Center for Genomics & Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David C Magnus
- Stanford Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|