1
|
Shraim MA, Massé-Alarie H, Hodges PW. Methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: a systematic review. Pain 2021; 162:1007-1037. [PMID: 33136983 DOI: 10.1097/j.pain.0000000000002113] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/05/2020] [Indexed: 12/18/2022]
Abstract
ABSTRACT Mechanism-based classification of pain has been advocated widely to aid tailoring of interventions for individuals experiencing persistent musculoskeletal pain. Three pain mechanism categories (PMCs) are defined by the International Association for the Study of Pain: nociceptive, neuropathic, and nociplastic pain. Discrimination between them remains challenging. This study aimed to build on a framework developed to converge the diverse literature of PMCs to systematically review methods purported to discriminate between them; synthesise and thematically analyse these methods to identify the convergence and divergence of opinion; and report validation, psychometric properties, and strengths/weaknesses of these methods. The search strategy identified articles discussing methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system. Studies that assessed the validity of methods to discriminate between categories were assessed for quality. Extraction and thematic analysis were undertaken on 184 articles. Data synthesis identified 200 methods in 5 themes: clinical examination, quantitative sensory testing, imaging, diagnostic and laboratory testing, and pain-type questionnaires. Few methods have been validated for discrimination between PMCs. There was general convergence but some disagreement regarding findings that discriminate between PMCs. A combination of features and methods, rather than a single method, was generally recommended to discriminate between PMCs. Two major limitations were identified: an overlap of findings of methods between categories due to mixed presentations and many methods considered discrimination between 2 PMCs but not others. The results of this review provide a foundation to refine methods to differentiate mechanisms for musculoskeletal pain.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
- Centre Interdisciplinaire de recherche en réadaptation et Integration sociale (CIRRIS), Université Laval, Québec, QC, Canada
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| |
Collapse
|
2
|
Dugan EA, Schachner B, Jergova S, Sagen J. Intensive Locomotor Training Provides Sustained Alleviation of Chronic Spinal Cord Injury-Associated Neuropathic Pain: A Two-Year Pre-Clinical Study. J Neurotrauma 2021; 38:789-802. [PMID: 33218293 DOI: 10.1089/neu.2020.7378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neuropathic pain often accompanies the functional deficits associated with spinal cord injury (SCI) and further reduces a patient's quality of life. Clinical and pre-clinical research is beginning to highlight the beneficial role that rehabilitative therapies such as locomotor training can have not only on functional recovery but also on chronic pain management. Our group has previously developed an intensive locomotor training (ILT) treadmill protocol on rats that reduced SCI neuropathic pain symptoms for at least 3 months. We have extended these findings in the current study to evaluate the ability of regular ILT regimen over a 2 year period post-SCI to maintain neuropathic pain reduction. To assess this, the rat clip compression SCI model (T7/8) was used and treadmill training was initiated starting 4 weeks after SCI and continuing through the duration of the study. Results showed continued suppression of SCI neuropathic pain responses (reduced mechanical, heat, and cold hypersensitivity throughout the entire time course of the study). In contrast, non-exercised rats showed consistent and sustained neuropathic pain responses during this period. In addition, prolonged survival and improved locomotor outcomes were observed in rats undergoing ILT as the study longevity progressed. Potential contributory mechanisms underlying beneficial effects of ILT include reduced inflammation and restoration of anti-nociceptive inhibitory processes as indicated by neurochemical assays in spinal tissue of remaining rats at 2 years post-SCI. The benefits of chronic ILT suggest that long-term physical exercise therapy can produce powerful and prolonged management of neuropathic pain, partly through sustained reduction of spinal pathological processes.
Collapse
Affiliation(s)
- Elizabeth A Dugan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Benjamin Schachner
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Stanislava Jergova
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| |
Collapse
|
4
|
Ungerer G, Cui J, Ndam T, Bekemeier M, Song H, Li R, Siedhoff HR, Yang B, Appenteng MK, Greenlief CM, Miller DK, Sun GY, Folk WR, Gu Z. Harpagophytum procumbens Extract Ameliorates Allodynia and Modulates Oxidative and Antioxidant Stress Pathways in a Rat Model of Spinal Cord Injury. Neuromolecular Med 2020; 22:278-292. [PMID: 31900786 DOI: 10.1007/s12017-019-08585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a deliberating disorder with impairments in locomotor deficits and incapacitating sensory abnormalities. Harpagophytum procumbens (Hp) is a botanical widely used for treating inflammation and pain related to various inflammatory and musculoskeletal conditions. Using a modified rodent contusion model of SCI, we explored the effects of this botanical on locomotor function and responses to mechanical stimuli, and examined possible neurochemical changes associated with SCI-induced allodynia. Following spinal cord contusion at T10 level, Hp (300 mg/kg, p.o.) or vehicle (water) was administered daily starting 24 h post-surgery, and behavioral measurements made every-other day until sacrifice (Day 21). Hp treatment markedly ameliorated the contusion-induced decrease in locomotor function and increased sensitivity to mechanical stimuli. Determination of Iba1 expression in spinal cord tissues indicated microglial infiltration starting 3 days post-injury. SCI results in increased levels of 4-hydroxynonenal, an oxidative stress product and proalgesic, which was diminished at 7 days by treatment with Hp. SCI also enhanced antioxidant heme oxygenase-1 (HO-1) expression. Concurrent studies of cultured murine BV-2 microglial cells revealed that Hp suppressed oxidative/nitrosative stress and inflammatory responses, including production of nitric oxide and reactive oxygen species, phosphorylation of cytosolic phospholipases A2, and upregulation of the antioxidative stress pathway involving the nuclear factor erythroid 2-related factor 2 and HO-1. These results support the use of Hp for management of allodynia by providing resilience against the neuroinflammation and pain associated with SCI and other neuropathological conditions.
Collapse
Affiliation(s)
- Garrett Ungerer
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Tina Ndam
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mikeala Bekemeier
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Runting Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Bo Yang
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael K Appenteng
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - C Michael Greenlief
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - William R Folk
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
5
|
Noller CM, Groah SL, Nash MS. Inflammatory Stress Effects on Health and Function After Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2017; 23:207-217. [PMID: 29339896 PMCID: PMC5562028 DOI: 10.1310/sci2303-207] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Injury to the spinal cord produces immediate, adaptive inflammatory responses that can exacerbate the initial injury and lead to secondary damage. Thus far, researchers and clinicians have focused on modulating acute inflammation to preserve sensorimotor function. However, this singular approach risks overlooking how chronic inflammation negatively impacts the broader health of persons with a spinal cord injury (SCI). Objective: The aim of this monograph was to discuss interrelated processes causing persistent inflammatory stress after SCI, along with associated health risks. We review archetypal factors that contribute to a chronic inflammatory state, including response to injury, acute infection, and autonomic dysreflexia. Secondary complications producing and exacerbating inflammation are also discussed, including pain, depression, obesity, and injury to the integumentary and skeletal systems. Finally, we discuss the role of bacteria and the gut microbiome in this process and then conclude with a discussion on how a pro-inflammatory phenotype promotes an elevated risk for cardiovascular disease after injury. Conclusions: Effectively managing chronic inflammation should be a high priority for clinicians and researchers who seek to improve the health and life quality of persons with SCI. Chronic inflammation worsens secondary medical complications and amplifies the risk for cardiometabolic disorders after injury, directly impacting both the quality of life and mortality risk after SCI. Inflammation can worsen pain and depression and even hinder neurological recovery. It is, therefore, imperative that countermeasures to chronic inflammation are routinely considered from the point of initial injury and proceeding throughout the lifespan of the individual with SCI.
Collapse
Affiliation(s)
- Crystal M. Noller
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - Suzanne L. Groah
- Paralysis and Recovery Program, MedStar National Rehabilitation Hospital, Washington, DC
- Rehabilitation Medicine, Georgetown University Hospital, Washington, DC
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
- Departments of Neurological Surgery and Physical Medicine & Rehabilitation, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|