1
|
Cequier A, Vázquez FJ, Vitoria A, Bernad E, Fuente S, Serrano MB, Zaragoza MP, Romero A, Rodellar C, Barrachina L. The systemic cellular immune response against allogeneic mesenchymal stem cells is influenced by inflammation, differentiation and MHC compatibility: in vivo study in the horse. Front Vet Sci 2024; 11:1391872. [PMID: 38957800 PMCID: PMC11217187 DOI: 10.3389/fvets.2024.1391872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
The effectiveness and safety of allogeneic mesenchymal stem/stromal cells (MSCs) can be affected by patient's immune recognition. Thus, MSC immunogenicity and their immunomodulatory properties are crucial aspects for therapy. Immune responses after allogeneic MSC administration have been reported in different species, including equine. Interactions of allogenic MSCs with the recipient's immune system can be influenced by factors like matching or mismatching for the major histocompatibility complex (MHC) between donor-recipient, and by the levels of MHC expression in MSCs. The latter can vary upon MSC inflammatory exposure or differentiation, such as chondrogenic induction, making both priming and differentiation interesting therapeutic strategies. This study investigated the systemic in vivo immune cellular response against allogeneic equine MSCs in these situations. Either MSCs in basal conditions (MSC-naïve), pro-inflammatory primed (MSC-primed) or chondrogenically differentiated (MSC-chondro) were repeatedly administered subcutaneously into autologous, MHC-matched or MHC-mismatched allogeneic equine recipients. At different time-points after each administration, lymphocytes were obtained from recipient horses and exposed in vitro to the same type of MSCs to assess the proliferative response of different T cell subsets (cytotoxic, helper, regulatory), B cells, and interferon gamma (IFNγ) secretion. Higher proliferative response of helper and cytotoxic T lymphocytes and IFNγ secretion was observed in response to all types of MHC-mismatched MSCs over MHC-matched ones. MSC-primed produced the highest immune response, followed by MSC-naïve, and MSC-chondro. However, MSC-primed activated Treg and had a mild effect on B cells, and the response after their second administration was similar to the first one. On the other hand, both MSC-chondro and MSC-naïve barely induced Treg response but promoted B lymphocyte activation, and proportionally induced a higher cell response after the second administration. In conclusion, both the type of MSC conditioning and the MHC compatibility influenced systemic immune recognition of equine MSCs after single and repeated administrations, but the response was different. Selecting MHC-matched donors would be particularly recommended for MSC-primed and repeated MSC-naïve administrations. While MHC-mismatching in MSC-chondro would be less critical, B cell response should not be ignored. Comprehensively investigating the in vivo immune response against equine allogeneic MSCs is crucial for advancing veterinary cell therapies.
Collapse
Affiliation(s)
- Alina Cequier
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Arantza Vitoria
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Elvira Bernad
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - Sara Fuente
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - María Belén Serrano
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - María Pilar Zaragoza
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - Antonio Romero
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| | - Clementina Rodellar
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
| | - Laura Barrachina
- Biochemical Genetics Laboratory LAGENBIO, Institute for Health Research Aragón (IIS), AgriFood Institute of Aragón (IA2), University of Zaragoza, Zaragoza, Spain
- Equine Surgery and Medicine Service, Veterinary Hospital, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
2
|
Boone L, Peroni J. Introduction to Equine Biologic and Regenerative Therapies. Vet Clin North Am Equine Pract 2023; 39:419-427. [PMID: 37558508 DOI: 10.1016/j.cveq.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Regenerative medicine is defined as the process of replacing or regenerating cells, tissues, or organs to restore or establish normal function. The use of regenerative medicine in equine practice to treat injured musculoskeletal tissues with limited capacity for intrinsic healing is growing. This article provides the practitioner with a brief and basic overview of the regenerative products currently used in equine practice.
Collapse
Affiliation(s)
- Lindsey Boone
- Department of Clinical Sciences, Auburn University College of Veterinary Medicine, John Thomas Vaughan Large Animal Teaching Hospital, 1500 Wire Road, Auburn, AL 36849, USA.
| | - John Peroni
- Department of Large Animal Medicine, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
3
|
Knott LE, Fonseca-Martinez BA, O'Connor AM, Goodrich LR, McIlwraith CW, Colbath AC. Current use of biologic therapies for musculoskeletal disease: A survey of board-certified equine specialists. Vet Surg 2022; 51:557-567. [PMID: 35383972 PMCID: PMC9322007 DOI: 10.1111/vsu.13805] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/05/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022]
Abstract
Objective To evaluate the use of mesenchymal stem cells (MSCs), autologous conditioned serum (ACS), platelet‐rich plasma (PRP), and autologous protein solution (APS) for the treatment of equine musculoskeletal disease by diplomates of the American College of Veterinary Surgery (ACVS), and American College of Veterinary Sports Medicine and Rehabilitation (ACVSMR). Study design Cross‐sectional study. Sample population Diplomates (n = 423). Methods An email link was sent to ACVS and ACVMR diplomates. A survey contained 59 questions regarding demographics, as well as indications, frequency, adverse effects, and limitations of use. Responses were analyzed using Fisher's exact test. Results One hundred and fifty four surveys were analyzed. Years in practice and type of practice were not associated with biologic therapy use. PRP was the most used therapy (120/137; 87.5%). PRP and MSCs were most often administered intralesionally while ACS and APS were most often administered intra‐articularly. ACS (50/104; 48.1%) treatment was repeated commonly within 2 weeks of initial injection. MSCs (39/90; 43.3%) and PRP (38/100; 38%) were commonly repeated 1‐2 months after initial injection and APS was typically repeated >4 months after initial injection (21/53; 39.6%). Local inflammation and expense were the most common adverse effect and limitation of use. Conclusion Diplomates most commonly utilized PRP and MSC intralesionally for soft‐tissue injuries, and ACS and ACP intra‐articularly for joint injury. Protocols for repeated administration varied widely. Local inflammation was a clinical concern with the use of biologics. Clinical significance Biologic therapies are used commonly by ACVS and ACVSMR diplomates for soft tissue and joint disease.
Collapse
Affiliation(s)
- Lindsay E Knott
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - B Alexander Fonseca-Martinez
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Annette M O'Connor
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA
| | - Aimee C Colbath
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Cequier A, Sanz C, Rodellar C, Barrachina L. The Usefulness of Mesenchymal Stem Cells beyond the Musculoskeletal System in Horses. Animals (Basel) 2021; 11:ani11040931. [PMID: 33805967 PMCID: PMC8064371 DOI: 10.3390/ani11040931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The main target of mesenchymal stem cell therapy in horses has long been the locomotor system, because these athletic animals commonly suffer from tendon and joint lesions. Originally, mesenchymal stem cells were thought to act by just differentiating into the cells of the injured tissue. However, these cells are also able to regulate and stimulate the body’s own repair mechanisms, opening the door to many applications in inflammatory and immune-mediated disorders in both animals and humans. In horses, beyond their traditional application in the musculoskeletal system, these cells have been studied for ophthalmologic pathologies such as corneal ulcers or immune-mediated processes, and for reproductive disorders such as endometritis/endometrosis. Their potential has been explored for equine pathologies very similar to those affecting people, such as asthma, metabolic syndrome, aberrant wound healing, or endotoxemia, as well as for equine-specific pathologies such as laminitis. Current evidence is still preliminary, and further research is needed to clarify different aspects, although research performed so far shows the promising potential of mesenchymal stem cells to treat a wide variety of equine pathologies, some of which are analogous to human disorders. Therefore, advancements in this path will be beneficial for both animals and people. Abstract The differentiation ability of mesenchymal stem cells (MSCs) initially raised interest for treating musculoskeletal injuries in horses, but MSC paracrine activity has widened their scope for inflammatory and immune-mediated pathologies in both equine and human medicine. Furthermore, the similar etiopathogenesis of some diseases in both species has advanced the concept of “One Medicine, One Health”. This article reviews the current knowledge on the use of MSCs for equine pathologies beyond the locomotor system, highlighting the value of the horse as translational model. Ophthalmologic and reproductive disorders are among the most studied for MSC application. Equine asthma, equine metabolic syndrome, and endotoxemia have been less explored but offer an interesting scenario for human translation. The use of MSCs in wounds also provides a potential model for humans because of the healing particularities in both species. High-burden equine-specific pathologies such as laminitis have been suggested to benefit from MSC-therapy, and MSC application in challenging disorders such as neurologic conditions has been proposed. The available data are preliminary, however, and require further development to translate results into the clinic. Nevertheless, current evidence indicates a significant potential of equine MSCs to enlarge their range of application, with particular interest in pathologies analogous to human conditions.
Collapse
Affiliation(s)
- Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
| | - Carmen Sanz
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain;
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
| | - Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO—Instituto de Investigación Sanitaria de Aragón (IIS)—Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain; (A.C.); (C.R.)
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, C/Miguel Servet, 177, 50013 Zaragoza, Spain;
- Correspondence:
| |
Collapse
|