1
|
Zhou X, Cao H, Liao T, Hua W, Zhao R, Wang D, Deng H, Yang Y, Liu S, Ni G. Mechanosensitive lncRNA H19 promotes chondrocyte autophagy, but not pyroptosis, by targeting miR-148a in post-traumatic osteoarthritis. Noncoding RNA Res 2025; 10:163-176. [PMID: 39399379 PMCID: PMC11470567 DOI: 10.1016/j.ncrna.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE Investigating whether mechanosensitive lncRNA H19 can directly target miR-148a to alleviate cartilage damage in post-traumatic osteoarthritis (PTOA). METHODS Thirty-two female rats were randomly divided into four groups: Sham-operated group (Sham group, n = 8), treadmill running group (R group, n = 8), anterior cruciate ligament transection (ACLT) group (ACLT group, n = 8), and ACLT + treadmill running group (ACLT + R group, n = 8). Histological evaluation was performed to observe the pathological changes in the cartilage of the rat knee. Micro-CT was performed to detect the bone morphological changes in the subchondral bone. RT-qPCR and Western-Blot were performed to detect changes in mRNA and protein levels of metabolic and inflammatory factors as well as changes in the expression of lncRNA H19 and miR-148a in cartilage. The Flexcell 5000™ Tension System was used to further validate that lncRNA H19 has mechanosensitivity in vitro. Finally, cell transfection techniques were used to knock down the expression of lncRNA H19 in chondrocytes to validate the regulatory role of lncRNA H19/miR-148a in cartilage metabolism. RESULTS ACLT combined with treadmill running aggravated the abnormal hyperplasia of subchondral bone in the lateral tibial plateau of the rat knee joint, disturbed the balance of cartilage metabolism, induced cartilage inflammatory response and chondrocyte pyroptosis, which eventually led to cartilage damage and PTOA. Importantly, we found that the expression of lncRNA H19 was significantly downregulated in the cartilage of the ACLT + R group. Bioinformatics analysis revealed that miR-148a may be a direct target of lncRNA H19. Subsequently, we focused on the mechanosensitive of lncRNA H19. Subsequently, moderate-intensity mechanical tension stress reversed the expression of lncRNA H19 and autophagy-related factors in inflammatory chondrocytes, while miR-148a showed an opposite expression trend, demonstrating that mechanosensitive lncRNA H19 may be involved in regulating the chondrocyte inflammatory response by targeting miR-148a and activating autophagy. Cell transfection experiments revealed that lncRNA H19 knockdown upregulated miR-148a expression and significantly inhibited the autophagy level of chondrocytes without significant alteration of chondrocyte pyroptosis, which in turn exacerbated the inflammatory response of chondrocytes. CONCLUSIONS Mechanosensitive lncRNA H19 can promote chondrocyte autophagy rather than pyroptosis by targeting miR-148a, thus alleviating cartilage damage in PTOA. LncRNA H19 may be a potential therapeutic target for PTOA.
Collapse
Affiliation(s)
- Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Tao Liao
- Department of Rehabilitation Medicine, Chengdu Second People's Hospital, Chengdu, 610000, China
| | - Weizhong Hua
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Huili Deng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yajing Yang
- Department of Acupuncture and Moxibustion, Hubei University of Chinese Medicine, Wuhan, 430070, China
| | - ShengYao Liu
- Department of Spinal Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| |
Collapse
|
2
|
Gao J, Zhang X, Ding J, Zhang H, Zhang X, Jiang J, Chen W. The characteristic expression of circulating MicroRNAs in osteoporosis: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1481649. [PMID: 39736860 PMCID: PMC11682891 DOI: 10.3389/fendo.2024.1481649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Objective To evaluate the characteristics of the circulating microRNA expression profiles in patients with osteoporosis. Methods A systematic literature search was performed using the Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP, and WANFANG databases from inception until 1 March 2024. The search strategy employed keywords, encompassing "osteoporosis", "bone loss", or "osteopenia" and "miRNA" or "microRNA". The Newcastle-Ottawa Scale (NOS) quality assessment scale was used to evaluate the methodological quality. Heterogeneity tests and statistical analyses of all data were performed by Stata 16.0. The differences in microRNA levels between groups were illustrated by the weighted mean difference (WMD) and 95% confidence interval (95% CI). Results A total of 27 studies were included and analyzed in the meta-analysis, with 2,263 participants. The results showed that miR-21-5p (WMD 0.88, 95% CI: 0.22 to 1.55), miR-125b-5p (WMD 6.63, 95% CI: 0.19 to 13.08), miR-483-5p(WMD 6.43, 95% CI: 3.26 to 9.61), miR-133a (WMD 1.43, 95% CI: 1.39 to 1.47), miR-422a (WMD 1, 95% CI: 0.28 to 1.72), and miR-214-3p (WMD 2.03, 95% CI: 0.14 to 3.92) were significantly upregulated, and miR-497-5p (WMD -0.57, 95% CI: -0.98 to -0.17) was significantly downregulated. Conclusion miR-21-5p, miR-125b-5p, miR-483-5p, miR-133a, miR-497-5p, miR-422a, and miR-214-3p might serve as potential diagnostic biomarkers for osteoporosis. In the future, integrating these miRNAs to build a diagnostic model might be a promising diagnosis strategy for osteoporosis. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/ , identifier CRD42023481209.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xiuzhen Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Jing Ding
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Houli Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Xu Zhang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Juan Jiang
- Department of Stomatology, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Wenwen Chen
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| |
Collapse
|
3
|
Xiao L, Li X, Wang JJ, Quan XM, Zhao CS. Roles of NOC3L and DDX17 in acquired immunodeficiency complicated with viral myocarditis and osteoporosis. Medicine (Baltimore) 2024; 103:e40692. [PMID: 39809148 PMCID: PMC11596639 DOI: 10.1097/md.0000000000040692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025] Open
Abstract
Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus. The differentially expressed genes (DEGs) were screened and performed weighted gene co-expression network analysis. Construction and analysis of protein-protein interaction network. Functional enrichment analysis, gene set enrichment analysis, immune infiltration analysis, gene expression heatmap, and comparative toxicogenomics database analysis were performed. TargetScan screens miRNAs of DEGs. Thousand three hundred thirty-five DEGs were identified. According to gene ontology, they are mainly concentrated in the regulation of RNA biosynthesis, cytoplasmic ribosome, and the DNA binding transcription factor activity. In Kyoto Encyclopedia of Genes and Genomes analysis, they are mainly concentrated in TGF-β signal pathway, Notch signaling pathway, cAMP signaling pathway, and Apelin signaling pathway. Gene set enrichment analysis shows that DEGs are mainly enriched in cytoplasmic ribosome, transcriptional regulator activity, DNA binding transcription factor activity, TGF-β signal pathway, and Notch signal pathway. In the enrichment project of Metascape, tyrosine kinase receptor signaling, growth regulation, and enzyme-linked receptor protein signaling pathways can be seen in the gene ontology enrichment project. Four core genes (NOC3L, WDR46, SDAD1, and DDX17) were obtained. Core genes (NOC3L, WDR46, SDAD1, and DDX17) were low expressed in both acquired immunodeficiency and osteoporosis samples. Comparative toxicogenomics database analysis showed that core genes (NOC3L, WDR46, SDAD1, and DDX17) were associated with inflammation necrosis. The expressions of NOC3L and DDX17 are low in acquired immunodeficiency combined with viral myocarditis and osteoporosis.
Collapse
Affiliation(s)
- Liping Xiao
- Cardiovascular Internal Medicine, The Second Hospital of Qinhuangdao, Changli County, Qinhuangdao, Hebei Province, China
| | - Xin Li
- Department of Orthopaedics, Beijing Ditan Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing, China
| | - Jing-Jing Wang
- Department of Orthopaedics, Beijing Ditan Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing, China
| | - Xue-Min Quan
- Department of Orthopaedics, Beijing Ditan Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing, China
| | - Chang-Song Zhao
- Department of Orthopaedics, Beijing Ditan Hospital Affiliated to Capital Medical University, Chaoyang District, Beijing, China
| |
Collapse
|
4
|
Groven RVM, Blokhuis JT, Poeze M, van Griensven M, Blokhuis TJ. Surgical suction filter-derived bone graft displays osteogenic miRNA and mRNA patterns. Eur J Trauma Emerg Surg 2024; 50:315-326. [PMID: 37646799 PMCID: PMC10923964 DOI: 10.1007/s00068-023-02350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Recently, a surgical suction filter device was introduced which aims at generating a suction filter-derived bone grafting substitute (SF-BGS). The osteogenic capacity of this grafting material, however, is unclear. MicroRNAs (miRNAs) and osteogenic mRNAs may influence these processes. The aim of this study was therefore to investigate the quality of the SF-BGS by determining the expression of miRNAs and osteogenic mRNAs. METHODS Samples were collected during non-union surgery. Upon exposure of the intramedullary canal, the surgical vacuum system was fitted with the suction filter device containing collagen complex and synthetic β-TCP: (Ca3(PO4)2, granule size 5-8 mm, total volume 10 mL (Cerasorb Foam®, Curasan AG, Kleinostheim, Germany). As a control, venous blood was used as in current clinical practice. Samples were snap-frozen and mechanically disrupted. MiRNAs and mRNAs were isolated, transcribed, and pooled for qPCR analysis. Lastly, mRNA targets were determined through in silico target analyses. RESULTS The study population consisted of seven patients with a posttraumatic long bone non-union (4♀; mean age 54 ± 16 years). From the array data, distinct differences in miRNA expression were found between the SF-BGS and control samples. Osteogenic marker genes were overall upregulated in the SF-BGS. Qiagen IPA software identified 1168 mRNA targets for 43 of the overall deregulated miRNAs. CONCLUSION This study revealed distinctly deregulated and exclusively expressed osteogenic miRNAs in SF-BGS, as well as overall enhanced osteogenic marker gene expression, as compared to the venous blood control group. These expression profiles were not seen in control samples, indicating that the derived material displays an osteogenic profile. It may therefore be a promising tool to generate a BGS or graft extender when needed.
Collapse
Affiliation(s)
- Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands.
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands.
| | - Job T Blokhuis
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Zhang S, Zhang Y, Yang D, Zhi W, Li J, Liu M, Lu Y, Han J. Circ_KIAA0922 regulates Saos-2 cell proliferation and osteogenic differentiation by regulating the miR-148a-3p/SMAD5 axis and activating the TGF-β signaling pathway. Intractable Rare Dis Res 2023; 12:222-233. [PMID: 38024586 PMCID: PMC10680163 DOI: 10.5582/irdr.2023.01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Circular RNAs (circRNAs) are emerging as important regulators in human disease, but their function in osteoporosis (OP) is not sufficiently known. The aim of this study was to identify the possible molecular mechanism of circ_KIAA0922 in osteogenic differentiation of Saos-2 cells in vitro and the interactions among circ_KIAA0922, miR-148a-3p, and SMAD family member 5 (SMAD5). Circ_ KIAA0922, miR-148a-3p, and SMAD5 were overexpressed by transient transfection. Dual-luciferase reporter assay system was used to analyze the combination among circ_KIAA0922, miR-148a-3p, and SMAD5. In addition, the levels of circ_KIAA0922, miR-148a-3p, SMAD5, osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) were detected using RT-qPCR or western blot analysis. Alizarin red staining was performed to analyze the degree of osteogenic differentiation under the control of circ_KIAA0922, miR-148a-3p, and SMAD5. We found that circ_KIAA0922 knockdown inhibited the proliferation and osteogenic differentiation of Saos-2 cells. Circ_KIAA0922 directly targeted miR-148a-3p, and miR-148a-3p inhibition reversed the effects of circ_KIAA0922 knockdown on the proliferation and osteogenic differentiation of Saos-2 cells. Overexpression of SMAD5 promoted the proliferation and osteogenic differentiation of Saos-2 cells and attenuated the inhibitory effect of miR-148a-3p on cell proliferation and osteogenic differentiation. In conclusion, circ_ KIAA0922 facilitated Saos-2 cell proliferation and osteogenic differentiation via the circ_KIAA0922/ miR-148a-3p/ SMAD5 axes in vitro, thus providing insights into the mechanism of osteogenic differentiation by circ_ KIAA0922.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yongtao Zhang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Dan Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Wei Zhi
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Junfeng Li
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Meilin Liu
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
6
|
Skelton AM, Cohen DJ, Boyan BD, Schwartz Z. Osteoblast-Derived Matrix Vesicles Exhibit Exosomal Traits and a Unique Subset of microRNA: Their Caveolae-Dependent Endocytosis Results in Reduced Osteogenic Differentiation. Int J Mol Sci 2023; 24:12770. [PMID: 37628952 PMCID: PMC10454939 DOI: 10.3390/ijms241612770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Matrix vesicles (MVs) are nano-sized extracellular vesicles that are anchored in the extracellular matrix (ECM). In addition to playing a role in biomineralization, osteoblast-derived MVs were recently suggested to have regulatory duties. The aims of this study were to establish the characteristics of osteoblast-derived MVs in the context of extracellular vesicles like exosomes, assess their role in modulating osteoblast differentiation, and examine their mechanism of uptake. MVs were isolated from the ECM of MG63 human osteoblast-like cell cultures and characterized via enzyme activity, transmission electron microscopy, nanoparticle tracking analysis, Western blot, and small RNA sequencing. Osteoblasts were treated with MVs from two different culture conditions (growth media [GM]; osteogenic media [OM]) to evaluate their effects on the differentiation and production of inflammatory markers and on macrophage polarization. MV endocytosis was assessed using a lipophilic, fluorescent dye and confocal microscopy with the role of caveolae determined using methyl-β-cyclodextrin. MVs exhibited a four-fold enrichment in alkaline phosphatase specific activity compared to plasma membranes; were 50-150 nm in diameter; possessed exosomal markers CD63, CD81, and CD9 and endosomal markers ALIX, TSG101, and HSP70; and were selectively enriched in microRNA linked to an anti-osteogenic effect and to M2 macrophage polarization. Treatment with GM or OM MVs decreased osteoblast differentiation. Osteoblasts endocytosed MVs using a mechanism that involves caveolae. These results support the hypothesis that osteoblasts produce MVs that participate in the regulation of osteogenesis.
Collapse
Affiliation(s)
- Anne M. Skelton
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.S.); (B.D.B.)
| | - D. Joshua Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Barbara D. Boyan
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.M.S.); (B.D.B.)
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
7
|
Pan B, Zheng L, Liu S, Fang J, Lou C, Hu X, Ye L, Lai H, Gao J, Zhang Y, Ni K, He D. MiR-148a deletion protects from bone loss in physiological and estrogen-deficient mice by targeting NRP1. Cell Death Dis 2022; 8:470. [DOI: 10.1038/s41420-022-01261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022]
Abstract
AbstractBone metabolic homeostasis is largely dependent on the dynamic balance between osteoblasts and osteoclasts. MicroRNAs (miRNAs) play critical roles in regulating bone metabolism. In this study, we explored the role of a new miRNA (miR-148a) in osteoporosis. We compared the bone phenotype between miR-148a knockout (KO) mice and the wild-type (WT) littermates. We found miR-148a KO mice exhibited an increased bone mass phenotype and decreased osteoclastogenesis compared to the WT group. In vitro, miR-148a overexpression promoted osteoclastogenesis and bone resorption function. Mechanistically, NRP1 was identified as a novel direct target of miR-148a, and NRP1 silencing reversed the effect of miR-148a knockout. In OVX and calvarial osteolysis models, miR-148a KO protects mice against excessive bone resorption, while miR-148a agomiR/AAV-shNRP1 accelerates pathologic bone loss. Finally, the miR-148a level was found to be positively correlated with β-CTX in postmenopausal osteoporosis (PMOP) serum specimens. In summary, our findings revealed that miR-148a genetic deletion ameliorates bone loss under physiological and pathological conditions by targeting NRP1. In osteoclast-related bone metabolic diseases such as PMOP, miR-148a may be an attractive therapeutic target in the future.
Collapse
|
8
|
Ho ML, Hsu CJ, Wu CW, Chang LH, Chen JW, Chen CH, Huang KC, Chang JK, Wu SC, Shao PL. Enhancement of Osteoblast Function through Extracellular Vesicles Derived from Adipose-Derived Stem Cells. Biomedicines 2022; 10:biomedicines10071752. [PMID: 35885057 PMCID: PMC9312889 DOI: 10.3390/biomedicines10071752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cell that is investigated in bone tissue engineering (BTE). Osteoblasts are the main cells responsible for bone formation in vivo and directing ADSCs to form osteoblasts through osteogenesis is a research topic in BTE. In addition to the osteogenesis of ADSCs into osteoblasts, the crosstalk of ADSCs with osteoblasts through the secretion of extracellular vesicles (EVs) may also contribute to bone formation in ADSC-based BTE. We investigated the effect of ADSC-secreted EVs (ADSC-EVs) on osteoblast function. ADSC-EVs (size ≤ 1000 nm) were isolated from the culture supernatant of ADSCs through ultracentrifugation. The ADSC-EVs were observed to be spherical under a transmission electron microscope. The ADSC-EVs were positive for CD9, CD81, and Alix, but β-actin was not detected. ADSC-EV treatment did not change survival but did increase osteoblast proliferation and activity. The 48 most abundant known microRNAs (miRNAs) identified within the ADSC-EVs were selected and then subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The GO analysis revealed that these miRNAs are highly relevant to skeletal system morphogenesis and bone development. The KEGG analysis indicated that these miRNAs may regulate osteoblast function through autophagy or the mitogen-activated protein kinase or Ras-related protein 1 signaling pathway. These results suggest that ADSC-EVs enhance osteoblast function and can contribute to bone regeneration in ADSC-based BTE.
Collapse
Affiliation(s)
- Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804201, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedics, China Medical University Hospital, Taichung 404332, Taiwan;
- School of Chinese Medicine, China Medical University, Taichung 406040, Taiwan
| | - Che-Wei Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Ling-Hua Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Jhen-Wei Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Program in Biomedical Engineering, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kui-Chou Huang
- Department of Orthopedics, Asia University Hospital, Taichung 413505, Taiwan;
- Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80787, Taiwan; (M.-L.H.); (C.-W.W.); (L.-H.C.); (J.-W.C.); (C.-H.C.); (J.-K.C.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80787, Taiwan
- Post-Baccalaureate Program in Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| | - Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 41354, Taiwan
- Correspondence: (S.-C.W.); (P.-L.S.); Tel.: +(886)-7-3121101 (ext. 2553) (S.-C.W.); +(886)-7-3121101 (ext. 20030) (P.-L.S.)
| |
Collapse
|
9
|
Krishnan RH, Sadu L, Das UR, Satishkumar S, Pranav Adithya S, Saranya I, Akshaya R, Selvamurugan N. Role of p300, a histone acetyltransferase enzyme, in osteoblast differentiation. Differentiation 2022; 124:43-51. [DOI: 10.1016/j.diff.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022]
|