1
|
Zohri M, Arefian E, Azizi Z, Akbari Javar H, Shadboorestan A, Fatahi Y, Chogan F, Taheri M, Karoobi S, Aghaee-Bakhtiari SH, Bonakdar S, Gazori T, Mohammadi S, Saadatpour F, Ghahremani MH. Activation of the BMP2/SMAD4 signaling pathway for enhancing articular cartilage regeneration of mesenchymal stem cells utilizing chitosan/alginate nanoparticles on 3D extracellular matrix scaffold. Int J Biol Macromol 2024; 277:133995. [PMID: 39038571 DOI: 10.1016/j.ijbiomac.2024.133995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
This study investigated the efficacy of using chitosan/alginate nanoparticles loaded with recombinant human bone morphogenetic-2 (rhBMP-2) and SMAD4 encoding plasmid to enhance the chondrogenesis of human bone marrow mesenchymal stem cells (hBM-MSCs) seeded on an extracellular matrix (ECM). The research treatments included the stem cells treated with the biological cocktail (BC), negative control (NC), hBM-MSCs with chondrogenic medium (MCM), hBM-MSCs with naked rhBMP-2 and chondrogenic medium (NB/C), and hBM-MSCs with naked rhBMP-2 and chondrogenic medium plus SMAD4 encoding plasmid transfected with polyethyleneimine (PEI) (NB/C/S/P). The cartilage differentiation was performed with real-time quantitative PCR analysis and alizarin blue staining. The data indicated that the biological cocktail (BC) exhibited significantly higher expression of cartilage-related genes compared to significant differences with MCM and negative control (NC) on chondrogenesis. In the (NB/C/S/P), the expression levels of SOX9 and COLX were lower than those in the BC group. The expression pattern of the ACAN gene was similar to COL2A1 changes suggesting that it holds promising potential for cartilage regeneration.
Collapse
Affiliation(s)
- Maryam Zohri
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences.
| | - Zahra Azizi
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Akbari Javar
- Departments of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Faraz Chogan
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sepideh Karoobi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Center, Mashhad University of Medical Science, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Taraneh Gazori
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 1917733831 Tehran, Iran
| | - Saeid Mohammadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Bordbar S, Li Z, Lotfibakhshaiesh N, Ai J, Tavassoli A, Beheshtizadeh N, Vainieri L, Khanmohammadi M, Sayahpour FA, Baghaban Eslaminejad M, Azami M, Grad S, Alini M. Cartilage tissue engineering using decellularized biomatrix hydrogel containing TGF-β-loaded alginate microspheres in mechanically loaded bioreactor. Sci Rep 2024; 14:11991. [PMID: 38796487 PMCID: PMC11127927 DOI: 10.1038/s41598-024-62474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Physiochemical tissue inducers and mechanical stimulation are both efficient variables in cartilage tissue fabrication and regeneration. In the presence of biomolecules, decellularized extracellular matrix (ECM) may trigger and enhance stem cell proliferation and differentiation. Here, we investigated the controlled release of transforming growth factor beta (TGF-β1) as an active mediator of mesenchymal stromal cells (MSCs) in a biocompatible scaffold and mechanical stimulation for cartilage tissue engineering. ECM-derived hydrogel with TGF-β1-loaded alginate-based microspheres (MSs) was created to promote human MSC chondrogenic development. Ex vivo explants and a complicated multiaxial loading bioreactor replicated the physiological conditions. Hydrogels with/without MSs and TGF-β1 were highly cytocompatible. MSCs in ECM-derived hydrogel containing TGF-β1/MSs showed comparable chondrogenic gene expression levels as those hydrogels with TGF-β1 added in culture media or those without TGF-β1. However, constructs with TGF-β1 directly added within the hydrogel had inferior properties under unloaded conditions. The ECM-derived hydrogel group including TGF-β1/MSs under loading circumstances formed better cartilage matrix in an ex vivo osteochondral defect than control settings. This study demonstrates that controlled local delivery of TGF-β1 using MSs and mechanical loading is essential for neocartilage formation by MSCs and that further optimization is needed to prevent MSC differentiation towards hypertrophy.
Collapse
Affiliation(s)
- Sima Bordbar
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- AO Research Institute Davos, Davos, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Nasrin Lotfibakhshaiesh
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mehdi Khanmohammadi
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Mahmoud Azami
- Tissue Engineering Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland.
| |
Collapse
|