1
|
Carmona JU, Carmona-Ramírez LH, López C. Platelet-Rich Plasma and Related Orthobiologics for the Treatment of Equine Musculoskeletal Disorders-A Bibliometric Analysis from 2000 to 2024. Vet Sci 2024; 11:385. [PMID: 39195839 PMCID: PMC11359792 DOI: 10.3390/vetsci11080385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: There is increasing interest in the use of platelet-rich plasma and related orthobiologics for the treatment of chronic musculoskeletal disorders in horses; however, there is no information on the bibliometric impact of the literature published in this area. (2) Methods: A bibliometric analysis was performed using the bibliometrix R package by analyzing the documents registered in the WOS and Scopus databases from 2000 to 2024. The included registers were evaluated according to the menu of results from the biblioshiny web app (overview, sources, authors, documents, words, trending topics, clustering, conceptual structure, and social structure). (3) Conclusions: The documents produced were mainly published in Frontiers in Veterinary Science, Journal of Equine Veterinary Science, BMC Veterinary Research, and the American Journal of Veterinary Research). The most productive institutions were Universidad de Caldas, Colorado State University, University of California-Davis, and University of Leipzig, and the most productive countries were the USA, Brazil, and Colombia. Horse, platelet-rich plasma, equine, osteoarthritis, and autologous conditioned serum were the most frequently used keywords. The trending topics in this area are platelet lysates and orthobiologics. The collaboration network of authors, institutions, and countries shows an isolated development of individual author networks with modest collaboration between institutions and countries.
Collapse
Affiliation(s)
- Jorge U. Carmona
- Grupo de Investigación Terapia Regenerativa, Departamento de Salud Animal, Universidad de Caldas, Manizales 170004, Colombia
| | - Luis H. Carmona-Ramírez
- Grupo de Investigación EFE, Facultad de Educación, Universidad Católica de Manizales, Manizales 170004, Colombia;
| | - Catalina López
- Grupo de Investigación Patología Clínica Veterinaria, Departamento de Salud Animal, Universidad de Caldas, Manizales 170004, Colombia;
| |
Collapse
|
2
|
Fardi A, Kodonas K, Gogos C. A Bibliometric Analysis of Platelet Derivate Uses in Oral and Maxillofacial Surgery. J Oral Maxillofac Surg 2023; 81:1569-1586. [PMID: 37783365 DOI: 10.1016/j.joms.2023.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Concentrated platelet derivatives (PDs) such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) have been extensively applied in tissue engineering, and particularly in various fields of regenerative dentistry. The purpose of the present citation analysis was to compile the 100 top-cited articles on the PDs uses in oral and maxillofacial surgery. METHODS A cross-sectional search of the relevant studies in the Web of Science citation database was conducted to identify the 100 most-cited articles. All the included papers consisted of independent variables of this analysis. Covariates that were further considered were basic bibliometric indexes, such as publication year, publishing journal, authorship, institution and country of origin, study design, and field of study. The primary outcome variables were citation counts and citation density. A descriptive analysis of secondary outcome variables, namely bibliographic data such as keyword, abstract, title term co-occurrence analysis, thematic map and wordcloud analysis, was performed using the bibliometrix R and VOSviewer software. RESULTS The total citation count for the 100 most-cited articles ranged from 85 to 1821, with 2002 being the most productive year. With 15 articles, the Journal of Periodontology was the most represented journal, followed closely by the Journal of Oral and Maxillofacial Surgery and Clinical Oral Implants Research. The United States published the largest number of papers. Original basic science research studies on implantology and biology dominated the top-cited list. Randomized clinical trials and systematic reviews were adequately represented in the top-cited list. Platelet-derived growth factor and osteoprotegerin represented emerging minimally developed themes, while PRP, growth factors and fibrin, along with the applications of PRF in gingival recession and intra bony defects, were considered important motor themes. CONCLUSIONS The current study provides a complete list and in-depth analysis of the 100 most-cited publications relevant to PDs use in oral and maxillofacial surgery, identifying the most important research topics, most impactful authors, institutions, and countries. Though PRP studies were leading the top-cited list, publications focusing on PRF pesented higher citation density values, indicating a continuously increasing citation rate.
Collapse
Affiliation(s)
- Anastasia Fardi
- Department of Dentoalveolar Surgery, Surgical Implantology & Radiology, School of Dentistry, Aristotle University of Thessaloniki, Greece.
| | - Konstantinos Kodonas
- Assistant Professor, Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | - Christos Gogos
- Professor, Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
3
|
Sebbagh P, Hirt-Burri N, Scaletta C, Abdel-Sayed P, Raffoul W, Gremeaux V, Laurent A, Applegate LA, Gremion G. Process Optimization and Efficacy Assessment of Standardized PRP for Tendinopathies in Sports Medicine: Retrospective Study of Clinical Files and GMP Manufacturing Records in a Swiss University Hospital. Bioengineering (Basel) 2023; 10:bioengineering10040409. [PMID: 37106596 PMCID: PMC10135571 DOI: 10.3390/bioengineering10040409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Platelet-rich plasma (PRP) preparations have recently become widely available in sports medicine, facilitating their use in regenerative therapy for ligament and tendon affections. Quality-oriented regulatory constraints for PRP manufacturing and available clinical experiences have underlined the critical importance of process-based standardization, a pre-requisite for sound and homogeneous clinical efficacy evaluation. This retrospective study (2013–2020) considered the standardized GMP manufacturing and sports medicine-related clinical use of autologous PRP for tendinopathies at the Lausanne University Hospital (Lausanne, Switzerland). This study included 48 patients (18–86 years of age, with a mean age of 43.4 years, and various physical activity levels), and the related PRP manufacturing records indicated a platelet concentration factor most frequently in the range of 2.0–2.5. The clinical follow-up showed that 61% of the patients reported favorable efficacy outcomes (full return to activity, with pain disappearance) following a single ultrasound-guided autologous PRP injection, whereas 36% of the patients required two PRP injections. No significant relationship was found between platelet concentration factor values in PRP preparations and clinical efficacy endpoints of the intervention. The results were in line with published reports on tendinopathy management in sports medicine, wherein the efficacy of low-concentration orthobiologic interventions appears to be unrelated to sport activity levels or to patient age and gender. Overall, this study confirmed the effectiveness of standardized autologous PRP preparations for tendinopathies in sports medicine. The results were discussed in light of the critical importance of protocol standardization for both PRP manufacturing and clinical administration to reduce biological material variability (platelet concentrations) and to enhance the robustness of clinical interventions (comparability of efficacy/patient improvement).
Collapse
Affiliation(s)
- Patrick Sebbagh
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- DLL Bioengineering, STI School of Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Wassim Raffoul
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Vincent Gremeaux
- Sport Medicine Unit, Division of Physical Medicine and Rehabilitation, Swiss Olympic Medical Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Alexis Laurent
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Lausanne Burn Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-21-314-35-10
| | - Gerald Gremion
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery Service, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (P.S.); (N.H.-B.); (C.S.); (P.A.-S.); (W.R.); (A.L.); (G.G.)
- Sport Medicine Unit, Division of Physical Medicine and Rehabilitation, Swiss Olympic Medical Center, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| |
Collapse
|
4
|
Sebbagh P, Cannone A, Gremion G, Gremeaux V, Raffoul W, Hirt-Burri N, Michetti M, Abdel-Sayed P, Laurent A, Wardé N, Applegate LA. Current Status of PRP Manufacturing Requirements & European Regulatory Frameworks: Practical Tools for the Appropriate Implementation of PRP Therapies in Musculoskeletal Regenerative Medicine. Bioengineering (Basel) 2023; 10:bioengineering10030292. [PMID: 36978683 PMCID: PMC10044789 DOI: 10.3390/bioengineering10030292] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Providing accurate and up-to-date practical tools enabling oversight of platelet-rich plasma (PRP) legislation and of the appropriate standards to be implemented for its manufacture and use in Europe is a demanding task. This is due to rapid medico-technological advancements, slowness and disparity in legislation updates and enforcement between member states, and many reported gray-zone practices, notably for autologous PRP use. The levels of risk associated with blood manipulation processes generally dictate the manufacturing requirements for PRP preparations, which have gradually shifted toward good manufacturing practices (GMP) for standardization and overall quality enhancement. This work firstly outlines Western European and Swiss legislation for PRP products/preparations, providing key simplified information and recommendations for medical doctors seeking to implement this biological-based therapy for safe use in hospital settings, clinics, or private offices. This work secondly shows the importance of PRP-based product manufacturing standardization, which subsequently enables sound clinical evaluation of therapeutic interventions. Although the applicable legal bases provide guidelines for GMP manufacturing infrastructure and basic process design, paramount importance is set on the definition of workflows, technical specifications, and key parameters for PRP preparation and delivery. Overall, the development of simple and robust technologies and processes for PRP preparation is critical for guaranteeing the high therapeutic quality of the intervention, in collaboration with qualified GMP manufacturing platforms. Importantly, this work aims to serve as a practical tool for clinicians based in Western Europe who are willing to appropriately (i.e., administratively and technically) implement autologous PRP treatments in musculoskeletal regenerative medicine workflows, to ensure they make informed and optimal regulatory or process-based decisions.
Collapse
|
5
|
Hart DA, Nakamura N. Creating an Optimal In Vivo Environment to Enhance Outcomes Using Cell Therapy to Repair/Regenerate Injured Tissues of the Musculoskeletal System. Biomedicines 2022; 10:1570. [PMID: 35884875 PMCID: PMC9313221 DOI: 10.3390/biomedicines10071570] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Following most injuries to a musculoskeletal tissue which function in unique mechanical environments, an inflammatory response occurs to facilitate endogenous repair. This is a process that usually yields functionally inferior scar tissue. In the case of such injuries occurring in adults, the injury environment no longer expresses the anabolic processes that contributed to growth and maturation. An injury can also contribute to the development of a degenerative process, such as osteoarthritis. Over the past several years, researchers have attempted to use cellular therapies to enhance the repair and regeneration of injured tissues, including Platelet-rich Plasma and mesenchymal stem/medicinal signaling cells (MSC) from a variety of tissue sources, either as free MSC or incorporated into tissue engineered constructs, to facilitate regeneration of such damaged tissues. The use of free MSC can sometimes affect pain symptoms associated with conditions such as OA, but regeneration of damaged tissues has been challenging, particularly as some of these tissues have very complex structures. Therefore, implanting MSC or engineered constructs into an inflammatory environment in an adult may compromise the potential of the cells to facilitate regeneration, and neutralizing the inflammatory environment and enhancing the anabolic environment may be required for MSC-based interventions to fulfill their potential. Thus, success may depend on first eliminating negative influences (e.g., inflammation) in an environment, and secondly, implanting optimally cultured MSC or tissue engineered constructs into an anabolic environment to achieve the best outcomes. Furthermore, such interventions should be considered early rather than later on in a disease process, at a time when sufficient endogenous cells remain to serve as a template for repair and regeneration. This review discusses how the interface between inflammation and cell-based regeneration of damaged tissues may be at odds, and outlines approaches to improve outcomes. In addition, other variables that could contribute to the success of cell therapies are discussed. Thus, there may be a need to adopt a Precision Medicine approach to optimize tissue repair and regeneration following injury to these important tissues.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Bone & Joint Health Strategic Clinical Network, Alberta Health Services, Edmonton, AB T5J 3E4, Canada
| | - Norimasa Nakamura
- Institute of Medical Science in Sport, Osaka Health Science University, 1-9-27 Tenma, Kita-ku, Osaka 530-0043, Japan;
| |
Collapse
|