1
|
Abolarinwa BA, Shaw MK, Lee CH. Perspectives on Challenges to Cell Therapy Development in Taiwan: Strengthening Evidential Standards and Ways Forward. Front Bioeng Biotechnol 2021; 9:789043. [PMID: 34976978 PMCID: PMC8716849 DOI: 10.3389/fbioe.2021.789043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past years, the field of regenerative medicine and cell therapy has garnered much interest, extending beyond the bench to broader use, and commercialization. These therapies undergo stringent regulatory oversight as a result of their complexities and potential risk across different jurisdictions. Taiwan’s government, with the aim of developing the country as a hub for regenerative medicine in Asia, enacted a dual track act to promote the development of regenerative and cell therapy products. This qualitative study used purposive sampling to recruit sixteen experts (Twelve respondents from medical institutions and four respondents from the industry) to understand their perspectives on one of the regulatory tracks which governs the medical use of cell technologies and challenges regarding its implementation. Semi-structured interviews were conducted, transcribed, coded and thematically analyzed. Three major themes emerged from the analysis: 1) Perceptions of the “Special Regulation for Cell Therapy” 2) Emerging issues and controversies on the medical use of cell technologies in private clinics, and 3) Challenges impeding the clinical innovation of cell technologies. As reported by the experts, it was clear that the special regulation for cell therapy was aimed at legalizing the clinical use of cell therapy in a similar fashion to an evidence-based pathway, to promote clinical innovation, ensure manufacturing consistency, and improve oversight on cell-based therapies. Thus, the regulation addresses the issues of safety concerns, patient’s access and stem cell tourism. However, the limited approved cell techniques, quality control during cell processing, time, and criteria used in evaluating applications in addition to the need to develop evidential standards for clinical evidence are some of the difficulties faced. Thus, policy interventions on funding, educational resources, training, and regulatory clarity addressing these challenges may positively impact clinical innovation of cell therapy in Taiwan.
Collapse
Affiliation(s)
- Bilikis Aderonke Abolarinwa
- International PhD program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Malissa Kay Shaw
- Graduate Institute of Humanities in Medicine, Taipei Medical University, Taipei, Taiwan
- School of Nursing, College of Nursing, Taipei Medical University, Taipei, Taiwan
| | - Chung-Hsi Lee
- International PhD program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Health and Biotechnology Law, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Chung-Hsi Lee,
| |
Collapse
|
2
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Challenges in Advanced Therapy Medicinal Product Development: A Survey among Companies in Europe. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:121-130. [PMID: 30456217 PMCID: PMC6234262 DOI: 10.1016/j.omtm.2018.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023]
Abstract
Advanced therapy medicinal products (ATMPs) hold promise as treatments for previously untreatable and high-burden diseases. Expectations are high and active company pipelines are observed, yet only 10 market authorizations were approved in Europe. Our aim was to identify challenges experienced in European ATMP clinical development by companies. A survey-based cohort study was conducted among commercial ATMP developers. Respondents shared challenges experienced during various development phases, as well as developer and product characteristics. Descriptions of challenges were grouped in domains (clinical, financial, human resource management, regulatory, scientific, technical, other) and further categorized using thematic content analysis. A descriptive analysis was performed. We invited 271 commercial ATMP developers, of which 68 responded providing 243 challenges. Of products in development, 72% were in early clinical development and 40% were gene therapies. Most developers were small- or medium-sized enterprises (65%). The most often mentioned challenges were related to country-specific requirements (16%), manufacturing (15%), and clinical trial design (8%). The European ATMP field is still in its early stages, and developers experience challenges on many levels. Challenges are multifactorial and a mix of ATMP-specific and generic development aspects, such as new and orphan indications, novel technologies, and inexperience, adding complexity to development efforts.
Collapse
|
4
|
Erten E, Arslan YE. The Great Harmony in Translational Medicine: Biomaterials and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:21-39. [DOI: 10.1007/5584_2018_231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
CAR T-cell therapies: formulation–product–proposition framework for commercialisation. Drug Discov Today 2016; 21:1731-1734. [DOI: 10.1016/j.drudis.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 11/20/2022]
|
6
|
Coping with uncertainty: entrepreneurial sensemaking in regenerative medicine venturing. JOURNAL OF TECHNOLOGY TRANSFER 2016. [DOI: 10.1007/s10961-015-9465-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Rafiq QA, Ortega I, Jenkins SI, Wilson SL, Patel AK, Barnes AL, Adams CF, Delcassian D, Smith D. The early career researcher's toolkit: translating tissue engineering, regenerative medicine and cell therapy products. Regen Med 2015; 10:989-1003. [PMID: 26628407 DOI: 10.2217/rme.15.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although the importance of translation for the development of tissue engineering, regenerative medicine and cell-based therapies is widely recognized, the process of translation is less well understood. This is particularly the case among some early career researchers who may not appreciate the intricacies of translational research or make decisions early in development which later hinders effective translation. Based on our own research and experiences as early career researchers involved in tissue engineering and regenerative medicine translation, we discuss common pitfalls associated with translational research, providing practical solutions and important considerations which will aid process and product development. Suggestions range from effective project management, consideration of key manufacturing, clinical and regulatory matters and means of exploiting research for successful commercialization.
Collapse
Affiliation(s)
- Qasim A Rafiq
- Centre for Biological Engineering, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,Aston Medical Research Institute, School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Ilida Ortega
- Bioengineering & Health Technologies Group, The School of Clinical Dentistry, University of Sheffield, S10 2TA, UK
| | - Stuart I Jenkins
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Samantha L Wilson
- Academic Ophthalmology, Division of Clincial Neuroscience, Queen's Medical Centre Campus, University of Nottingham, NG7 2UH, UK
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering & Modeling, University of Nottingham, Nottingham, NG7 2RD, UK.,David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Christopher F Adams
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, ST5 5BG, UK
| | - Derfogail Delcassian
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, UK.,Wolfson Centre for Stem Cells, Centre for Biological Sciences, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - David Smith
- Centre for Biological Engineering, Wolfson School of Mechanical & Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK.,PCT, a Caladrius company, 4 Pearl Court, Suite C, Allendale, NJ 07401, USA
| |
Collapse
|
8
|
Pashneh-Tala S, MacNeil S, Claeyssens F. The Tissue-Engineered Vascular Graft-Past, Present, and Future. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:68-100. [PMID: 26447530 PMCID: PMC4753638 DOI: 10.1089/ten.teb.2015.0100] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide, with this trend predicted to continue for the foreseeable future. Common disorders are associated with the stenosis or occlusion of blood vessels. The preferred treatment for the long-term revascularization of occluded vessels is surgery utilizing vascular grafts, such as coronary artery bypass grafting and peripheral artery bypass grafting. Currently, autologous vessels such as the saphenous vein and internal thoracic artery represent the gold standard grafts for small-diameter vessels (<6 mm), outperforming synthetic alternatives. However, these vessels are of limited availability, require invasive harvest, and are often unsuitable for use. To address this, the development of a tissue-engineered vascular graft (TEVG) has been rigorously pursued. This article reviews the current state of the art of TEVGs. The various approaches being explored to generate TEVGs are described, including scaffold-based methods (using synthetic and natural polymers), the use of decellularized natural matrices, and tissue self-assembly processes, with the results of various in vivo studies, including clinical trials, highlighted. A discussion of the key areas for further investigation, including graft cell source, mechanical properties, hemodynamics, integration, and assessment in animal models, is then presented.
Collapse
Affiliation(s)
- Samand Pashneh-Tala
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield , Broad Lane, Sheffield, United Kingdom
| |
Collapse
|
9
|
Bubela T, Reshef A, Li MD, Atkins H, Caulfield T, Culme-Seymour E, Gold ER, Illes J, Isasi R, McCabe C, Ogbogu U, Piret J, Mason C. Enabling advanced cell therapies (EnACT): invitation to an online forum on resolving barriers to clinical translation. Regen Med 2012; 7:735-40. [DOI: 10.2217/rme.12.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Tania Bubela
- Department of Public Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Amir Reshef
- Department of Public Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Matthew D Li
- Department of Public Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harold Atkins
- The Ottawa Hospital Research Institute, The Ottawa Hospital General Campus, Ottawa, ON, Canada
| | | | | | | | - Judy Illes
- Faculty of Medicine & National Core for Neuroethics, University of British Columbia, Vancouver, BC, Canada
| | - Rosario Isasi
- Centre of Genomics & Policy, Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | | | - Ubaka Ogbogu
- Faculty of Law, University of Alberta, Edmonton, AB, Canada
| | - James Piret
- Michael Smith Laboratories & Department of Chemical & Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Chris Mason
- Advanced Centre for Biochemical Engineering, UCL, London, UK
| |
Collapse
|
10
|
Smith DM. Assessing commercial opportunities for autologous and allogeneic cell-based products. Regen Med 2012; 7:721-32. [DOI: 10.2217/rme.12.40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The two primary cell sources used to produce cell-based therapies are autologous (self-derived) and allogeneic (derived from a donor). This analysis attempts to compare and contrast the two approaches in order to understand whether there is an emerging preference in the market. While the current clinical trials underway are slightly biased to autologous approaches, it is clear that both cell-based approaches are being aggressively pursued. This analysis also breaks down the commercial advantages of each cell-based approach, comparing both cost of goods and the ideal indication type for each. While allogeneic therapies have considerable advantages over autologous therapies, they do have a distinct disadvantage regarding potential immunogenicity. The introduction of the hybrid autologous business model provides the ability for autologous-based therapies to mitigate some of the advantages that allogeneic cell-based therapies enjoy, including cost of goods. Finally, two case studies are presented that demonstrate that there is sufficient space for both autologous and allogeneic cell-based therapies within a single disease area.
Collapse
Affiliation(s)
- Devyn M Smith
- Pfizer Worldwide R&D, The Portway Building, Granta Park, Great Abington, Cambridge CB21 6GS, UK
| |
Collapse
|
11
|
|
12
|
Regulation of Stem Cell-Based Therapies in Canada: Current Issues and Concerns. Stem Cell Rev Rep 2012; 8:623-8. [DOI: 10.1007/s12015-012-9360-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Messenger MP, Tomlins PE. Regenerative medicine: a snapshot of the current regulatory environment and standards. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:H10-H17. [PMID: 21433095 DOI: 10.1002/adma.201100254] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Michael P Messenger
- Clinical and Biomedical Proteomics Group, Cancer Research UK Centre, Leeds Institute of Molecular Medicine, St James's University Hospital, UK.
| | | |
Collapse
|
14
|
Smith D. Commercialization challenges associated with induced pluripotent stem cell-based products. Regen Med 2010; 5:593-603. [PMID: 20632862 DOI: 10.2217/rme.10.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Induced pluripotent stem (iPS) cells have generated excitement in the regenerative medicine industry. Products derived from iPS cells could be used in a range of drug discovery and development processes. These nontherapeutic products will continue to be launched over the next 5 years, and provide income and knowledge to drive the therapeutic use of iPS cells forward. While the commercial opportunity for iPS cell-based therapies is potentially large, the looming technical and scientific hurdles must be overcome and, thus, the launch of a therapy based on iPS cells is unlikely to occur until the 2020s. While the launch of a therapeutic is many years away, the business models for commercialization should be well understood and proven based on experience with other non-iPS cell-based therapies (both autologous and allogeneic) that will already be on the market.
Collapse
Affiliation(s)
- Devyn Smith
- Strategic Management Group, Pfizer Global R&D, 50 Pequot Avenue, MS6025-C4171, New London, CT 06320, USA.
| |
Collapse
|
15
|
Trounson A, Baum E, Gibbons D, Tekamp-Olson P. Developing a Case Study Model for Successful Translation of Stem Cell Therapies. Cell Stem Cell 2010; 6:513-6. [DOI: 10.1016/j.stem.2010.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Mason C, Manzotti E. Regenerative medicine cell therapies: numbers of units manufactured and patients treated between 1988 and 2010. Regen Med 2010; 5:307-13. [DOI: 10.2217/rme.10.37] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|
17
|
Ginty PJ, Singh PB, Smith D, Hourd P, Williams DJ. Achieving reimbursement for regenerative medicine products in the USA. Regen Med 2010; 5:463-9. [DOI: 10.2217/rme.10.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Achieving reimbursement for regenerative medicine products is potentially a greater challenge than gaining US FDA approval, making it a decisive factor in the success or failure of small businesses. However, the mechanisms by which reimbursement is achieved are still seen as something of a ‘black box’, especially to those outside of the USA. This report aims to provide insights into the mechanisms of reimbursement and variety of payers in the USA, and to act as a starting point for a successful US reimbursement strategy. Fundamental concepts such as coverage, payment and coding are explained and linked with the factors that potentially determine the successful reimbursement of regenerative medicine products, including cost of goods and clinical study design. Finally, important considerations for the design of clinical studies that satisfy both the payers and the FDA are discussed and the key elements of a successful company strategy identified.
Collapse
Affiliation(s)
| | - PB Singh
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - D Smith
- Pepper Hamilton Law LLP, Pittsburgh, PA 15219-2502, USA
| | - P Hourd
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - DJ Williams
- Centre for Biological Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
18
|
Mason C, Manzotti E. Regen: the industry responsible for cell-based therapies. Regen Med 2009; 4:783-5. [DOI: 10.2217/rme.09.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Chris Mason
- Advanced Centre for Biochemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK
| | - Elisa Manzotti
- Future Medicine Ltd, Unitec House, 2 Albert Place, Finchley Central, London, N3 1QB, UK
| |
Collapse
|