1
|
Zhang Y, Ding F, Han J, Wang Z, Tian W. Recent advances in innovative biomaterials for promoting bladder regeneration: processing and functionalization. Front Bioeng Biotechnol 2025; 12:1528658. [PMID: 39834643 PMCID: PMC11743525 DOI: 10.3389/fbioe.2024.1528658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The bladder is a dynamic organ located in the lower urinary tract, responsible for complex and important physiological activities in the human body, including collecting and storing urine. Severe diseases or bladder injuries often lead to tissue destruction and loss of normal function, requiring surgical intervention and reconstruction. The rapid development of innovative biomaterials has brought revolutionary opportunities for modern urology to overcome the limitations of tissue transplantation. This article first summarized the latest research progress in the processing approaches and functionalization of acellular matrix, hydrogels, nanomaterials, and porous scaffolds in repairing and reconstructing the physiological structure and dynamic function of damaged bladder. Then, we discussed emerging strategies for bladder regeneration and functional recovery, such as cell therapy, organoids, etc. Finally, we outlined the important issues and future development prospects of biomaterials in bladder regeneration to inspire future research directions. By reviewing these innovative biomaterials and technologies, we hope to provide appropriate insights to achieve the ultimate goal of designing and manufacturing artificial bladder substitutes with ideal performance in all aspects.
Collapse
Affiliation(s)
- Yi Zhang
- The Second Hospital of Jilin University, Changchun, China
| | - Fu’an Ding
- The Second Hospital of Jilin University, Changchun, China
| | - Junjie Han
- The Second Hospital of Jilin University, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Wenjie Tian
- The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zupančič D, Mrak Poljšak K, Kreft ME. Co-culturing porcine normal urothelial cells, urinary bladder fibroblasts and smooth muscle cells for tissue engineering research. Cell Biol Int 2017; 42:411-424. [PMID: 29115705 DOI: 10.1002/cbin.10910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/05/2017] [Indexed: 12/27/2022]
Abstract
New strategies for culturing and co-culturing of the main types of urinary bladder cells are essential for successful establishment of biomimetic in vitro models, which could be applied for research into, and management of, diverse urological disorders. Porcine normal urothelial cells are available in nearly unlimited amounts and have many properties equivalent to human urothelial cells. In the present study, we established normal differentiated porcine urothelial cells in co-cultures with porcine urinary bladder normal fibroblasts and/or smooth muscle cells. The optimal culture medium for establishment of differentiated urothelial cells, demonstrated by positive immunofluorescence of uroplakins, cytokeratins (CK 7, CK 20), zonula occludens 1 (ZO-1), claudin 4, claudin 8, and E-cadherin, was the medium composed of equal parts of Advanced Dulbecco's modified Eagle's medium (A-DMEM) and MCDB 153 medium with physiological calcium concentration of 2.5 mM and without fetal bovine serum, named UroM (+Ca2+ - S). This medium was also proven to be suitable for culturing of bladder fibroblasts and smooth muscle cells and co-culturing of urothelial cells with these mesenchymal cells. Urothelial cell differentiation was optimal in UroM (+Ca2+ - S) medium in all co-culture conditions and when compared to all conditioned-media combinations. To summarize, these strategies for culturing and co-culturing of urinary bladder urothelial cells with mesenchymal cells could be used as new in vitro models for future basic and applicable research of the urinary bladder and thus potentially also for translational tissue engineering studies.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Katjuša Mrak Poljšak
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Farhat WA. Tissue Engineering of the Bladder—When Will We Get There? J Urol 2014; 192:1021-2. [DOI: 10.1016/j.juro.2014.07.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Walid A. Farhat
- Division of Pediatric Urology, University of Toronto, Sickkids Hospital, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Song L, Murphy SV, Yang B, Xu Y, Zhang Y, Atala A. Bladder Acellular Matrix and Its Application in Bladder Augmentation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:163-72. [DOI: 10.1089/ten.teb.2013.0103] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Lujie Song
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
- Department of Urology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Oriental Institute for Urologic Reconstruction, Shanghai, China
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Bin Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemin Xu
- Department of Urology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Oriental Institute for Urologic Reconstruction, Shanghai, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
5
|
Orabi H, Bouhout S, Morissette A, Rousseau A, Chabaud S, Bolduc S. Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal 2013; 2013:154564. [PMID: 24453796 PMCID: PMC3886608 DOI: 10.1155/2013/154564] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/29/2013] [Indexed: 02/05/2023] Open
Abstract
Urinary tract is subjected to many varieties of pathologies since birth including congenital anomalies, trauma, inflammatory lesions, and malignancy. These diseases necessitate the replacement of involved organs and tissues. Shortage of organ donation, problems of immunosuppression, and complications associated with the use of nonnative tissues have urged clinicians and scientists to investigate new therapies, namely, tissue engineering. Tissue engineering follows principles of cell transplantation, materials science, and engineering. Epithelial and muscle cells can be harvested and used for reconstruction of the engineered grafts. These cells must be delivered in a well-organized and differentiated condition because water-seal epithelium and well-oriented muscle layer are needed for proper function of the substitute tissues. Synthetic or natural scaffolds have been used for engineering lower urinary tract. Harnessing autologous cells to produce their own matrix and form scaffolds is a new strategy for engineering bladder and urethra. This self-assembly technique avoids the biosafety and immunological reactions related to the use of biodegradable scaffolds. Autologous equivalents have already been produced for pigs (bladder) and human (urethra and bladder). The purpose of this paper is to present a review for the existing methods of engineering bladder and urethra and to point toward perspectives for their replacement.
Collapse
Affiliation(s)
- Hazem Orabi
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
| | - Sara Bouhout
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
| | - Amélie Morissette
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
| | - Alexandre Rousseau
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
| | - Stéphane Chabaud
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
| | - Stéphane Bolduc
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénératrice, LOEX du Centre de Recherche FRQS du Centre de Recherche de CHU de Québec, Axe Médecine Régénératrice, Aile-R Centre Hospitalier Affilié Universitaire de Québec, 1401 18e rue, Québec, QC, Canada G1J 1Z4
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, QC, Canada G1K 7P4
| |
Collapse
|