1
|
Cui E, Zhang L, Pan X, Zhang Q, Zhang L, Wu F, Chen N, Lv L, Chen W, Chen H, Lin A, Wang F, Liang J, Pan R. RNA-Sequencing approach for exploring the therapeutic effect of umbilical cord mesenchymal stem/stromal cells on lipopolysaccharide-induced acute lung injury. Front Immunol 2022; 13:1021102. [PMID: 36341363 PMCID: PMC9632738 DOI: 10.3389/fimmu.2022.1021102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI) is significantly associated with morbidity and mortality in patients with critical diseases. In recent years, studies have identified that mesenchymal stem/stromal cells (MSCs) ameliorate ALI and pulmonary fibrosis. However, the mechanism underlying this outcome in ALI has not yet been investigated. In this study, RNA sequencing technology was used to analyze the gene expression profile of lung tissue in lipopolysaccharide (LPS)-induced ALI rats following treatment with human umbilical cord MSC (HUCMSC). Differential expression analyses, gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes enrichment, protein–protein interaction network identification, and hub gene analysis were also performed. HUCMSC treatment decreased inflammatory factor production and alveolar exudates, and attenuated lung damage in LPS-induced ALI rats. The RNA-Seq data indicated that HUCMSC treatment activated the IL-17, JAK-STAT, NF-κB, and TNF-α signaling pathways, increased oxygen transport, and decreased extracellular matrix organization. HUCMSC exert beneficial effects on ALI via these signaling pathways by reducing inflammation, inhibiting pulmonary fibrosis, and improving lung ventilation. Moreover, our study further revealed the hub genes (Tbx2, Nkx2-1, and Atf5) and signaling pathways involved in HUCMSC treatment, thus providing novel perspectives for future research into the molecular mechanisms underlying cell treatment of ALI. HUCMSC can regulate multiple genes and signaling pathways, which can prevent LPS-induced lung damage in an ALI rat model.
Collapse
Affiliation(s)
- Enhai Cui
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Na Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Lv
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Chen
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feng Wang
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinfeng Liang
- Department of Drug Evaluation, Zhejiang Center for Drug & Cosmetic Evaluation, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| |
Collapse
|
2
|
Essa HH, Jasim HS, Kadhim HA. Immunological and Hematological Response to Local Transplantation of Stem Cells in Injured Radial Nerve of Dogs. THE IRAQI JOURNAL OF VETERINARY MEDICINE 2020. [DOI: 10.30539/ijvm.v44i2.976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The current study was carried out to investigate the immunological and hematological changes due to local transplantation of human umbilical cord-mesenchymal-stem cells (HUC-MSCs) and scaffold-stem cells (SSCs) into the injured radial nerve. Therefore, three equal groups of dogs were subjected to this study; experimental (EG), positive control (PCG) and negative control (NCG). At 1st week, dogs of EG were showed an obvious mobility dysfunction. At 2nd and 4th weeks, there were apparent improvements reported on general and physical activities as well as functional ability of forelimb with the presence of slight lameness that was cured completely at 5th week. Regarding to immunobiomarkers, insignificant differences were showed at 1st week. However, significantly increase in IgG and TNF-α, and decrease in IL-10 was reported at 2nd, 4th, and 6th weeks. Regarding to hematologic parameters, significantly increases were recorded in total WBCs from 2nd week onwards, lymphocytes and neutrophils at 2nd week, monocytes at the 2nd and 4th weeks, and total RBCs at the 8th and 16th weeks. Significant differences were not reported in values of PCV and Hb throughout this study. In conclusion, HUC-MSCs and SSCs confirmed high activities in supporting of immunological and hematological responses, and in restoration of nerve function
Collapse
|
3
|
Schlundt C, Bucher CH, Tsitsilonis S, Schell H, Duda GN, Schmidt-Bleek K. Clinical and Research Approaches to Treat Non-union Fracture. Curr Osteoporos Rep 2018. [PMID: 29536393 DOI: 10.1007/s11914-018-0432-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW Impaired healing outcomes or even non-unions after bone injury are still a highly relevant problem in the daily clinical life. Especially within an aging population, the occurrence of bone fractures increases and thus novel treatment approaches to overcome compromised bone regeneration are needed. RECENT FINDINGS The gold standard to treat delayed or non-healing bone injuries is still the use of autologous bone grafts to foster regeneration. Besides its successful treatment outcome, it also has disadvantages: a second surgery is needed in order to harvest the bone material and the material is highly limited. Looking into the recent literature, a multitude of different research approaches were already conducted to identify new possible strategies to treat impaired bone regeneration: application of mesenchymal stromal cells, platelet lysates, growth factors, interference in the immune system, or bone formation stimulation by ultrasound. This review gives an overview of the treatment approaches actually performed in the clinic as well as at the bench in the context of compromised bone healing. It clearly highlights the complexity of the nature of non-healing bone fractures as well as patient-dependent factors influencing the healing process.
Collapse
Affiliation(s)
- Claudia Schlundt
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christian H Bucher
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanna Schell
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy 2017; 19:1351-1382. [PMID: 28964742 DOI: 10.1016/j.jcyt.2017.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023]
Abstract
The advances and success of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) in experimental disease animal models have fueled the development of targeted therapies in humans. The therapeutic potential of allogeneic transplantation of UC-MSCs has been under examination since 2009. The purpose of this systematic analysis was to review the published results, limitations and obstacles for UC-MSC transplantation. An extensive search strategy was applied to the published literature, 93 peer-reviewed full-text articles and abstracts were found published by early August 2017 that investigated the safety, efficacy and feasibility of UC-MSCs in 2001 patients with 53 distinct pathologies including many systemic/local, acute/chronic conditions. Few data were extracted from the abstracts and/or Chinese-written articles (n = 7, 8%). Importantly, no long-term adverse effects, tumor formation or cell rejection were reported. All studies noted certain degrees of therapeutic benefit as evidenced by clinical symptoms and/or laboratory findings. Thirty-seven percent (n = 34) of studies were found published as a single case (n = 10; 11%) or 2-10 case reports (n = 24; 26%) with no control group. Due to the nature of many stem cell-based studies, the majority of patients also received conventional therapy regimens, which obscured the pure efficacy of the cells transplanted. Randomized, blind, phase 1/2 trials with control groups (placebo-controlled) showed more plausible results. Given that most UC-MSC trials are early phase, the internationally recognized cell isolation and preparation standards should be extended to future phase 2/3 trials to reach more convincing conclusions regarding the safety and efficacy of UC-MSC therapies.
Collapse
Affiliation(s)
- Alp Can
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey.
| | - Ferda Topal Celikkan
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey
| | - Ozgur Cinar
- Ankara University School of Medicine, Department of Histology and Embryology, Laboratory for Stem Cells and Reproductive Cell Biology, Sihhiye, Ankara, Turkey
| |
Collapse
|
5
|
Emadedin M, Labibzadeh N, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Goodarzi A, Ghorbani Liastani M, Mirazimi Bafghi A, Baghaban Eslaminejad M, Aghdami N. Percutaneous Autologous Bone Marrow-Derived Mesenchymal Stromal Cell Implantation Is Safe for Reconstruction of Human Lower Limb Long Bone Atrophic Nonunion. CELL JOURNAL 2016; 19:159-165. [PMID: 28367426 PMCID: PMC5241512 DOI: 10.22074/cellj.2016.4866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/07/2016] [Indexed: 11/06/2022]
Abstract
Objective Nonunion is defined as a minimum of a 9-month period of time since an injury
with no visibly progressive signs of healing for 3 months. Recent studies show that application
of mesenchymal stromal cells (MSCs) in the laboratory setting is effective for bone
regeneration. Animal studies have shown that MSCs can be used to treat nonunions. For
the first time in an Iranian population, the present study investigated the safety of MSC
implantation to treat human lower limb long bone nonunion.
Materials and Methods It is a prospective clinical trial for evaluating the safety of using
autologus bone marrow derived mesenchymal stromal cells for treating nonunion. Orthopedic
surgeons evaluated 12 patients with lower limb long bone nonunion for participation in this
study. From these, 5 complied with the eligibility criteria and received MSCs. Under fluoroscopic
guidance, patients received a one-time implantation of 20-50×106 MSCs into the nonunion site.
All patients were followed by anterior-posterior and lateral X-rays from the affected limb, in addition
to hematological, biochemical, and serological laboratory tests obtained before and 1, 3, 6,
and 12 months after the implantation. Possible adverse effects that included local or systemic,
serious or non-serious, and related or unrelated effects were recorded during this time period.
Results From a safety perspective, all patients tolerated the MSCs implantation during
the 12 months of the trial. Three patients had evidence of bony union based on the after
implantation Xrays.
Conclusion The results have suggested that implantation of bone marrow-derived MSCs
is a safe treatment for nonunion. A double-blind, controlled clinical trial is required to assess
the efficacy of this treatment (Registration Number: NCT01206179).
Collapse
Affiliation(s)
- Mohsen Emadedin
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Narges Labibzadeh
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Roghayeh Fazeli
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Mohseni
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Esmat Hosseini
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reza Moghadasali
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soura Mardpour
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vajiheh Azimian
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Goodarzi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maede Ghorbani Liastani
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Mirazimi Bafghi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Labibzadeh N, Emadedin M, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, Mardpour S, Azimian V, Ghorbani Liastani M, Mirazimi Bafghi A, Baghaban Eslaminejad M, Aghdami N. Mesenchymal Stromal Cells Implantation in Combination with Platelet Lysate Product Is Safe for Reconstruction of Human Long Bone Nonunion. CELL JOURNAL 2016; 18:302-309. [PMID: 27602311 PMCID: PMC5011317 DOI: 10.22074/cellj.2016.4557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/03/2016] [Indexed: 12/29/2022]
Abstract
Objective Nonunion is defined as a minimum of 9 months since injury without any visible progressive signs of healing for 3 months. Recent literature has shown that the application of mesenchymal stromal cells is safe, in vitro and in vivo,
for treating long bone nonunion. The present
study was performed to investigate the safety of mesenchymal stromal cell (MSC) implantation
in combination with platelet lysate (PL) product for treating human long bone nonunion.
Materials and Methods In this case series clinical trial, orthopedic surgeons visited
eighteen patients with long bone nonunion, of whom 7 complied with the eligibility criteria. These patients received mesenchymal stromal cells (20 million cells implanted once
into the nonunion site using a fluoroscopic guide) in combination with PL product. For
evaluation of the effects of this intervention all the patients were followed up by taking
anterior-posterior and lateral X-rays of the affected limb before and 1, 3, 6, and 12 months
after the implantation. All side effects (local or systemic, serious or non-serious, related or
unrelated) were observed during this time period.
Results From a safety perspective the MSC implantation in combination with PL was
very well tolerated during the 12 months of the trial. Four patients were healed; based on
the control Xray evidence, bony union had occurred.
Conclusion Results from the present study suggest that the implantation of bone marrow-derived MSCs in combination with PL is safe for the treatment of nonunion. A double
blind, controlled clinical trial is required to assess the efficacy of this treatment (Registration Number: NCT01206179).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Nasser Aghdami
- P.O.Box: 16635-148Department of Regenerative BiomedicineCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| |
Collapse
|
7
|
Moradi M, Hood B, Moradi M, Atala A. The potential role of regenerative medicine in the man-agement of traumatic patients. J Inj Violence Res 2015; 7:27-35. [PMID: 25618439 PMCID: PMC4288293 DOI: 10.5249/jivr.v7i1.704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/13/2014] [Indexed: 11/10/2022] Open
Abstract
Traumatic injury represents the most common cause of death in ages 1 to 44 years and a significant proportion of patients treated in hospital emergency wards each year. Unfortunately, for patients who survive their injuries, survival is not equal to complete recovery. Many traumatic injuries are difficult to treat with conventional therapy and result in permanent disability. In such situations, regenerative medicine has the potential to play an important role in recovery of function. Regenerative medicine is a field that seeks to maintain or restore function with the development of biological substitutes for diseased or damaged tissues. Several regenerative approaches are currently under investigation, with a few achieving clinical application. For example, engineered skin has gained FDA approval, and more than 20 tissue engineered skin substitutes are now commercially available. Other organ systems with promising animal models and small human series include the central and peripheral nervous systems, the musculoskeletal system, the respiratory and genitourinary tracts, and others. This paper will be a clinically oriented review of the regenerative approaches currently under investigation of special interest to those caring for traumatic patients.
Collapse
Affiliation(s)
| | | | | | - Anthony Atala
- Department of Urology, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC,USA.
| |
Collapse
|
8
|
Zhou J, Tian G, Wang J, Luo X, Zhang S, Li J, Li L, Xu B, Zhu F, Wang X, Jia C, Zhao W, Zhao D, Xu A. Neural cell injury microenvironment induces neural differentiation of human umbilical cord mesenchymal stem cells. Neural Regen Res 2014; 7:2689-97. [PMID: 25337115 PMCID: PMC4200737 DOI: 10.3969/j.issn.1673-5374.2012.34.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the neural differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) under the induction of injured neural cells. After in vitro isolation and culture, passage 5 hUCMSCs were used for experimentation. hUCMSCs were co-cultured with normal or Aβ1-40-injured PC12 cells, PC12 cell supernatant or PC12 cell lysate in a Transwell co-culture system. Western blot analysis and flow cytometry results showed that choline acetyltransferase and microtubule-associated protein 2, a specific marker for neural cells, were expressed in hUCMSCs under various culture conditions, and highest expression was observed in the hUCMSCs co-cultured with injured PC12 cells. Choline acetyltransferase and microtubule-associated protein 2 were not expressed in hUCMSCs cultured alone (no treatment). Cell Counting Kit-8 assay results showed that hUCMSCs under co-culture conditions promoted the proliferation of injured PC12 cells. These findings suggest that the microenvironment during neural tissue injury can effectively induce neural cell differentiation of hUCMSCs. These differentiated hUCMSCs likely accelerate the repair of injured neural cells.
Collapse
Affiliation(s)
- Jin Zhou
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Guoping Tian
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Jinge Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xiaoguang Luo
- First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Siyang Zhang
- College of Basic Medical Sciences, China Medical University, Shenyang 110001, Liaoning Province, China
| | - Jianping Li
- Liaoning Provincial Blood Center, Shenyang 110044, Liaoning Province, China
| | - Li Li
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Bing Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Feng Zhu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Xia Wang
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Chunhong Jia
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Weijin Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Danyang Zhao
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| | - Aihua Xu
- Department of Neurology, First People's Hospital of Shenyang, Shenyang 110041, Liaoning Province, China
| |
Collapse
|
9
|
Li Z, Qin H, Feng Z, Liu W, Zhou Y, Yang L, Zhao W, Li Y. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury. Neural Regen Res 2014; 8:3441-8. [PMID: 25206667 PMCID: PMC4146003 DOI: 10.3969/j.issn.1673-5374.2013.36.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cell on the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cell suspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after cell transplantation, more than 80% of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improvements were observed only in 55–65% of control patients. At 8 and 12 weeks, muscular electrophysiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After cell transplantation, no immunological rejections were observed. These findings suggest that human umbilical cord mesenchymal stem cell-loaded amniotic membrane can be used for the repair of radial nerve injury.
Collapse
Affiliation(s)
- Zhi Li
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Hanjiao Qin
- Department of Endocrinology and Metabolism, First Clinical Hospital of Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin Province, China
| | - Zishan Feng
- Shengjing Hospital, China Medical University, Shenyang 110000, Liaoning Province, China
| | - Wei Liu
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Ye Zhou
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Lifeng Yang
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Wei Zhao
- Affiliated Central Hospital of Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Youjun Li
- Department of Human Anatomy and Histoembryology, Norman Bethune University of Medical Science, Changchun 130000, Jilin Province, China
| |
Collapse
|
10
|
Mixed effects of long-term frozen storage on cord tissue stem cells. Cytotherapy 2014; 16:1313-21. [DOI: 10.1016/j.jcyt.2014.05.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/05/2014] [Accepted: 05/28/2014] [Indexed: 01/22/2023]
|
11
|
Stem Cell Banking for Regenerative and Personalized Medicine. Biomedicines 2014; 2:50-79. [PMID: 28548060 PMCID: PMC5423479 DOI: 10.3390/biomedicines2010050] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source.
Collapse
|
12
|
Endogenous morphogens and fibrin bioscaffolds for stem cell therapeutics. Trends Biotechnol 2013; 31:364-74. [DOI: 10.1016/j.tibtech.2013.04.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/20/2022]
|
13
|
Wu L, Prins HJ, Helder MN, van Blitterswijk CA, Karperien M. Trophic effects of mesenchymal stem cells in chondrocyte co-cultures are independent of culture conditions and cell sources. Tissue Eng Part A 2012; 18:1542-51. [PMID: 22429306 DOI: 10.1089/ten.tea.2011.0715] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Earlier, we have shown that the increased cartilage production in pellet co-cultures of chondrocytes and bone marrow-derived mesenchymal stem cells (BM-MSCs) is due to a trophic role of the MSC in stimulating chondrocyte proliferation and matrix production rather than MSCs actively undergoing chondrogenic differentiation. These studies were performed in a culture medium that was not compatible with the chondrogenic differentiation of MSCs. In this study, we tested whether the trophic role of the MSCs is dependent on culturing co-culture pellets in a medium that is compatible with the chondrogenic differentiation of MSCs. In addition, we investigated whether the trophic role of the MSCs is dependent on their origins or is a more general characteristic of MSCs. Human BM-MSCs and bovine primary chondrocytes were co-cultured in a medium that was compatible with the chondrogenic differentiation of MSCs. Enhanced matrix production was confirmed by glycosaminoglycans (GAG) quantification. A species-specific quantitative polymerase chain reaction demonstrated that the cartilage matrix was mainly of bovine origin, indicative of a lack of the chondrogenic differentiation of MSCs. In addition, pellet co-cultures were overgrown by bovine cells over time. To test the influence of origin on MSCs' trophic effects, the MSCs isolated from adipose tissue and the synovial membrane were co-cultured with human primary chondrocytes, and their activity was compared with BM-MSCs, which served as control. GAG quantification again confirmed increased cartilage matrix production, irrespective of the source of the MSCs. EdU staining combined with cell tracking revealed an increased proliferation of chondrocytes in each condition. Irrespective of the MSC source, a short tandem repeat analysis of genomic DNA showed a decrease in MSCs in the co-culture over time. Our results clearly demonstrate that in co-culture pellets, the MSCs stimulate cartilage formation due to a trophic effect on the chondrocytes rather than differentiating into chondrocytes, irrespective of culture condition or origin. This implies that the trophic effect of MSCs in co-cultures is a general phenomenon with potential implications for use in cartilage repair strategies.
Collapse
Affiliation(s)
- Ling Wu
- Department of Tissue Regeneration, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|