1
|
Verma N, Khare D, Poe AJ, Amador C, Ghiam S, Fealy A, Ebrahimi S, Shadrokh O, Song XY, Santiskulvong C, Mastali M, Parker S, Stotland A, Van Eyk JE, Ljubimov AV, Saghizadeh M. MicroRNA and Protein Cargos of Human Limbal Epithelial Cell-Derived Exosomes and Their Regulatory Roles in Limbal Stromal Cells of Diabetic and Non-Diabetic Corneas. Cells 2023; 12:2524. [PMID: 37947602 PMCID: PMC10649916 DOI: 10.3390/cells12212524] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Epithelial and stromal/mesenchymal limbal stem cells contribute to corneal homeostasis and cell renewal. Extracellular vesicles (EVs), including exosomes (Exos), can be paracrine mediators of intercellular communication. Previously, we described cargos and regulatory roles of limbal stromal cell (LSC)-derived Exos in non-diabetic (N) and diabetic (DM) limbal epithelial cells (LECs). Presently, we quantify the miRNA and proteome profiles of human LEC-derived Exos and their regulatory roles in N- and DM-LSC. We revealed some miRNA and protein differences in DM vs. N-LEC-derived Exos' cargos, including proteins involved in Exo biogenesis and packaging that may affect Exo production and ultimately cellular crosstalk and corneal function. Treatment by N-Exos, but not by DM-Exos, enhanced wound healing in cultured N-LSCs and increased proliferation rates in N and DM LSCs vs. corresponding untreated (control) cells. N-Exos-treated LSCs reduced the keratocyte markers ALDH3A1 and lumican and increased the MSC markers CD73, CD90, and CD105 vs. control LSCs. These being opposite to the changes quantified in wounded LSCs. Overall, N-LEC Exos have a more pronounced effect on LSC wound healing, proliferation, and stem cell marker expression than DM-LEC Exos. This suggests that regulatory miRNA and protein cargo differences in DM- vs. N-LEC-derived Exos could contribute to the disease state.
Collapse
Affiliation(s)
- Nagendra Verma
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Drirh Khare
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam J. Poe
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Cynthia Amador
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sean Ghiam
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Sackler School of Medicine, New York State/American Program of Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrew Fealy
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shaghaiegh Ebrahimi
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Odelia Shadrokh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xue-Ying Song
- Genomics Core, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (X.-Y.S.); (C.S.)
| | - Chintda Santiskulvong
- Genomics Core, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (X.-Y.S.); (C.S.)
| | - Mitra Mastali
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Sarah Parker
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Aleksandr Stotland
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (M.M.); (S.P.); (A.S.); (J.E.V.E.)
| | - Alexander V. Ljubimov
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Mehrnoosh Saghizadeh
- Eye Program, Board of Governors Regenerative Medicine Institute, Cedars Sinai Medical Center, 8700 Beverly Boulevard, AHSP-A8104, Los Angeles, CA 90048, USA; (N.V.); (D.K.); (C.A.); (A.F.); (S.E.); (O.S.); (A.V.L.)
- Departments of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Zhu Y, Li C, Shuai R, Huang Z, Chen F, Wang Y, Zhou Q, Chen J. Experimental study of the mechanism of induction of conjunctival goblet cell hyperexpression using CHIR-99021 in vitro. Biochem Biophys Res Commun 2023; 668:104-110. [PMID: 37245290 DOI: 10.1016/j.bbrc.2023.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
A component of the tear film, mucin is produced by conjunctival goblet cells and is crucial to preserving the tear film's stability. Severe thermal burns, chemical burns, and severe ocular surface diseases can cause extensive damage to the conjunctiva, destroy the secretory function of goblet cells, and affect the stability of the tear film and integrity of the ocular surface. Currently, the expansion efficiency of goblet cells in vitro is low. In this study, we observed that rabbit conjunctival epithelial cells exhibited dense colony morphology after stimulation with the Wnt/β-catenin signaling pathway activator CHIR-99021 and promoted the differentiation of conjunctival goblet cells and the expression of its specific marker Muc5ac, among which the best induction effect was observed after 72 h in vitro culture with 5 μmol/L CHIR-99021. Under optimal culture conditions, CHIR-99021 increased the expression levels of the Wnt/β-catenin signaling pathway factors Frzb, β-catenin, SAM pointed domain containing ETS transcription factor, and glycogen synthase kinase-3β and the levels of the Notch signaling pathway factors Notch1 and Krüppel-like factor 4 while decreasing the expression levels of Jagged-1 and Hes1. The expression level of ABCG2, a marker of epithelial stem cells, was raised to keep rabbit conjunctival epithelial cells from self-renewing. Our study showed that CHIR-99021 stimulation successfully activated the Wnt/β-catenin signaling pathway and conjunctival goblet cell differentiation was stimulated, in which the Notch signaling pathway played a combined role. Those results provide a novel idea for the expansion of goblet cells in vitro.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Chaoqun Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ruixue Shuai
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ziqing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yingwei Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Xu L, Wang H, Luo L, Deng J, Chen F, Wang Y, Tang J, Wu Z, Zhou Q, Chen J. Aspartic acid and epidermal growth factor modified decellularized rabbit conjunctiva for conjunctival reconstruction. BIOMATERIALS ADVANCES 2022; 143:213164. [PMID: 36343391 DOI: 10.1016/j.bioadv.2022.213164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/31/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Conjunctival reconstruction is an indispensable part of ocular surface regeneration. Decellularized matrix has been considered as an ideal conjunctival substitution for conjunctival reconstruction. In the present study, we report the use of a decellularized rabbit conjunctiva (DRC) for conjunctival reconstruction in the rabbit surgical trauma model. Prepared by the phospholipase A2 decellularized method, the DRC was nearly DNA free while the collagen structure and natural extracellular matrix (ECM) were well preserved. In order to improve the performance of DRC, aspartic acid (Asp) was used as a spacer arm to crosslink epidermal growth factor (EGF) on the DRC to obtain DRC-Asp-EGF. The conjunctival epithelial cells cultured on the DRC-Asp-EGF showed a higher survival rates and a greater potential to differentiate into conjunctival goblet cells (CGCs) than those on the DRC. Finally, three groups were set to evaluate the transplantation effects in the rabbit surgical trauma model for 28 days: DRC-Asp-EGF group, amniotic membrane (AM) group, and ungrafted group. The DRC-Asp-EGF group was completely re-epithelized, and more CGCs were regenerated than the AM group, while no significant improvements were observed in the ungrafted group. Intact collagen structure, angiogenesis, and no scar formation were also observed in the DRC-Asp-EGF group. These results suggest that DRC-Asp-EGF is a feasible and effective transplant for conjunctival reconstruction and ocular surface regeneration.
Collapse
Affiliation(s)
- Liling Xu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hua Wang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lishi Luo
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Shenzhen Eye Hospital, Affiliated Hospital of Jinan University, Shenzhen, China
| | - Jingyue Deng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Department of Ophthalmology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yingwei Wang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Junjie Tang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Nian S, Kearns VR, Wong DSH, Bachhuka A, Vasilev K, Williams RL, Lai WW, Lo A, Sheridan CM. Plasma polymer surface modified expanded polytetrafluoroethylene promotes epithelial monolayer formation in vitro and can be transplanted into the dystrophic rat subretinal space. J Tissue Eng Regen Med 2020; 15:49-62. [PMID: 33180364 DOI: 10.1002/term.3154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 11/06/2022]
Abstract
The aim of this study was to evaluate whether the surface modification of expanded polytetrafluoroethylene (ePTFE) using an n-heptylamine (HA) plasma polymer would allow for functional epithelial monolayer formation suitable for subretinal transplant into a non-dystrophic rat model. Freshly isolated iris pigment epithelial (IPE) cells from two rat strains (Long Evans [LE] and Dark Agouti [DA]) were seeded onto HA, fibronectin-coated n-heptylamine modified (F-HA) and unmodified ePFTE and fibronectin-coated tissue culture (F-TCPS) substrates. Both F-HA ePTFE and F-TCPS substrates enabled functional monolayer formation with both strains of rat. Without fibronectin coating, only LE IPE formed a monolayer on HA-treated ePTFE. Functional assessment of both IPE strains on F-HA ePTFE demonstrated uptake of POS that increased significantly with time that was greater than control F-TCPS. Surgical optimization using Healon GV and mixtures of Healon GV: phosphate buffered saline (PBS) to induce retinal detachment demonstrated that only Healon GV:PBS allowed F-HA ePTFE substrates to be successfully transplanted into the subretinal space of Royal College of Surgeons rats, where they remained flat beneath the neural retina for up to 4 weeks. No apparent substrate-induced inflammatory response was observed by fundus microscopy or immunohistochemical analysis, indicating the potential of this substrate for future clinical applications.
Collapse
Affiliation(s)
- Shen Nian
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Victoria R Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - David S H Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China.,Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Akash Bachhuka
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Adelaide, South Australia, Australia
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Wico W Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Amy Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Carl M Sheridan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
6
|
Sanders RJ, Annest SJ. Amnion membrane improves results in treating neurogenic thoracic outlet syndrome. JOURNAL OF VASCULAR SURGERY CASES INNOVATIONS AND TECHNIQUES 2018; 4:163-165. [PMID: 29942911 PMCID: PMC6013002 DOI: 10.1016/j.jvscit.2018.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/20/2018] [Indexed: 11/29/2022]
Abstract
A patient with neurogenic thoracic outlet syndrome was initially treated with scalenectomy, first rib resection, and wrapping of the brachial plexus (BP) with amnion membrane (AM) to prevent postoperative adhesions. Twelve months later, at reoperation for recurrent symptoms, the AM was observed to be intact. The BP had no scar tissue around it. Recurrence was due to scarring around the nerve roots superior to the portion of the plexus that had been wrapped with AM. It was concluded that the AM had successfully protected the portion of the BP that had been wrapped. Longer term studies are in progress.
Collapse
Affiliation(s)
- Richard J Sanders
- Department of Surgery, University of Colorado Health Science Center, Aurora, Colorado
| | - Stephen J Annest
- Presbyterian/St. Lukes Hospital and St. Joseph Hospital, Denver, Colorado
| |
Collapse
|
7
|
Abstract
BACKGROUND Reconstruction of the conjunctiva is an essential part of ocular surface reconstruction. Clinically applied and experimentally tested tissue- and stem-cell-based approaches are presented and evaluated. MATERIALS AND METHODS Current literature and our own results will be presented. RESULTS Autologous conjunctiva, mucous membrane of the mouth or nose, and amniotic membrane are routinely used for conjunctival reconstruction. Limitations are limited availability, involvement in autoimmune diseases, donor heterogeneity, and degradation in an inflamed environment. Experimentally tested matrices as tissues made from extracellular matrix proteins, synthetic polymers, temperature-sensitive culture dishes, and decellularized conjunctiva have been tested in vitro and partly in vivo. To replace conjunctival cells, cells of conjunctiva and mucous membrane of mouth and nose have been evaluated and show progenitor cell properties as well as secretory capacity (goblet cell differentiation). CONCLUSIONS Although different matrices are available for conjunctival reconstruction there is-due to specific limitations of existing tissues-a need for the development of new therapies for conjunctival replacement. Matrices produced in the laboratory have already been partly investigated in vivo and may thus be clinically applicable in the near future. Adult mucous membrane cells show many properties of conjunctival epithelium after expansion in vitro and thus are a promising cell source for conjunctival tissue engineering. Other stem cells sources require further evaluation.
Collapse
|
8
|
Yao Q, Zhang W, Hu Y, Chen J, Shao C, Fan X, Fu Y. Electrospun collagen/poly(L-lactic acid-co-ε-caprolactone) scaffolds for conjunctival tissue engineering. Exp Ther Med 2017; 14:4141-4147. [PMID: 29104630 PMCID: PMC5658689 DOI: 10.3892/etm.2017.5073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/24/2017] [Indexed: 11/06/2022] Open
Abstract
Conjunctival injuries are general but intractable ocular surface diseases, the sequelae of which are particularly challenging to treat. A promising therapy for conjunctival injuries is to employ biodegradable scaffolds to deliver conjunctival epithelial cells for repairing damaged or diseased conjunctiva. In the present study, an ultrathin porous nanofibrous scaffold was fabricated by using collagen and poly(L-lactic acid-co-ε-caprolactone) (PLCL) and displayed a thickness of 20 µm, with a high porosity and an average fiber diameter of 248.83±26.44 nm. Conjunctival epithelial cells seeded on the scaffolds proliferated well and had a high cell viability. Reverse-transcription quantitative PCR showed the expression of conjunctival epithelial cell-specific genes; in addition, there was no significant difference in the inflammatory gene expression between cells grown on collagen/PLCL scaffolds and tricalcium phosphate scaffolds. After co-culture for 2 weeks in vitro, epithelial cell stratification was observed using hematoxylin and eosin staining, exhibiting three to four epithelial-cell layers. In conclusion, these results suggested that collagen/PLCL scaffolds have potential application for repairing conjunctival epithelial coloboma.
Collapse
Affiliation(s)
- Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Yang Hu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Junzhao Chen
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Chunyi Shao
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| |
Collapse
|
9
|
Eidet JR, Dartt DA, Utheim TP. Concise Review: Comparison of Culture Membranes Used for Tissue Engineered Conjunctival Epithelial Equivalents. J Funct Biomater 2015; 6:1064-84. [PMID: 26690486 PMCID: PMC4695911 DOI: 10.3390/jfb6041064] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 02/06/2023] Open
Abstract
The conjunctival epithelium plays an important role in ensuring the optical clarity of the cornea by providing lubrication to maintain a smooth, refractive surface, by producing mucins critical for tear film stability and by protecting against mechanical stress and infectious agents. A large number of disorders can lead to scarring of the conjunctiva through chronic conjunctival inflammation. For controlling complications of conjunctival scarring, surgery can be considered. Surgical treatment of symblepharon includes removal of the scar tissue to reestablish the deep fornix. The surgical defect is then covered by the application of a tissue substitute. One obvious limiting factor when using autografts is the size of the defect to be covered, as the amount of healthy conjunctiva is scarce. These limitations have led scientists to develop tissue engineered conjunctival equivalents. A tissue engineered conjunctival epithelial equivalent needs to be easily manipulated surgically, not cause an inflammatory reaction and be biocompatible. This review summarizes the various substrates and membranes that have been used to culture conjunctival epithelial cells during the last three decades. Future avenues for developing tissue engineered conjunctiva are discussed.
Collapse
Affiliation(s)
- Jon Roger Eidet
- Department of Ophthalmology, Oslo University Hospital, Oslo 0424, Norway.
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear/Harvard Medical School, Boston, MA 02114, USA.
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo 0424, Norway.
- Department of Oral Biology, University of Oslo, Oslo 0316, Norway.
- Department of Ophthalmology, Vestre Viken Hospital Trust, Drammen 3004, Norway.
| |
Collapse
|
10
|
Guo XL, Chen JS. Research on induced pluripotent stem cells and the application in ocular tissues. Int J Ophthalmol 2015; 8:818-25. [PMID: 26309885 DOI: 10.3980/j.issn.2222-3959.2015.04.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 02/02/2015] [Indexed: 12/31/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) were firstly induced from mouse fibroblasts since 2006, and then the research on iPSCs had made great progress in the following years. iPSCs were established from different somatic cells through DNA, RNA, protein or small molecule pathways and transduction vehicles. With continuous improvement of technology on reprogramming, the induction of iPSCs became more secure and effective, and showed enormous promise for clinical applications. We reviewed different reprogramming of somatic cells, four kinds of pathways of reprogramming and three types of transduction vehicles, and discuss the research of iPSCs in ophthalmology and the prospect of iPSCs applications.
Collapse
Affiliation(s)
- Xiao-Ling Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Jian-Su Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou 510632, Guangdong Province, China ; Eye Institute, Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China ; Department of Ophthalmology, the First Clinical Medical College of Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
11
|
Sasaki JI, Hashimoto M, Yamaguchi S, Itoh Y, Yoshimoto I, Matsumoto T, Imazato S. Fabrication of Biomimetic Bone Tissue Using Mesenchymal Stem Cell-Derived Three-Dimensional Constructs Incorporating Endothelial Cells. PLoS One 2015; 10:e0129266. [PMID: 26047122 PMCID: PMC4457484 DOI: 10.1371/journal.pone.0129266] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 05/06/2015] [Indexed: 01/17/2023] Open
Abstract
The development of technologies to promote vascularization of engineered tissue would drive major developments in tissue engineering and regenerative medicine. Recently, we succeeded in fabricating three-dimensional (3D) cell constructs composed of mesenchymal stem cells (MSCs). However, the majority of cells within the constructs underwent necrosis due to a lack of nutrients and oxygen. We hypothesized that incorporation of vascular endothelial cells would improve the cell survival rate and aid in the fabrication of biomimetic bone tissues in vitro. The purpose of this study was to assess the impact of endothelial cells combined with the MSC constructs (MSC/HUVEC constructs) during short- and long-term culture. When human umbilical vein endothelial cells (HUVECs) were incorporated into the cell constructs, cell viability and growth factor production were increased after 7 days. Furthermore, HUVECs were observed to proliferate and self-organize into reticulate porous structures by interacting with the MSCs. After long-term culture, MSC/HUVEC constructs formed abundant mineralized matrices compared with those composed of MSCs alone. Transmission electron microscopy and qualitative analysis revealed that the mineralized matrices comprised porous cancellous bone-like tissues. These results demonstrate that highly biomimetic bone tissue can be fabricated in vitro by 3D MSC constructs incorporated with HUVECs.
Collapse
Affiliation(s)
- Jun-Ichi Sasaki
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- * E-mail:
| | - Masanori Hashimoto
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoshi Yamaguchi
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshihiro Itoh
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Itsumi Yoshimoto
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
12
|
Comparative study of corneal endothelial cell damage after femtosecond laser assisted deep stromal dissection. BIOMED RESEARCH INTERNATIONAL 2014; 2014:731565. [PMID: 25114918 PMCID: PMC4119749 DOI: 10.1155/2014/731565] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
Purpose. To find a relatively safe designed stromal bed thickness to avoid endothelial damage for lamellar keratoplasty with an Allegretto Wavelight FS200 femtosecond laser. Methods. Twelve rabbits were randomly divided into 50 μm and 150 μm groups according to the anticipated residue stromal bed thickness preparation with a femtosecond laser. Six rabbits without laser cutting were used as a control group. Central endothelial images were analyzed with in vivo confocal microscopy and scanning electron microscopy. The apoptosis of endothelium was evaluated with Hoechst 33342 staining and a TUNEL assay. Results. The endothelium of the 50 μm group had extensive injuries upon in vivo confocal and scanning electron microscopic observation, and minor injuries were observed in the 150 μm group. Moreover, more apoptotic cells were observed in the 50 μm group. Conclusions. When using a FS200 femtosecond laser assisted anterior lamellar keratoplasty, there was minor endothelium damage with a 150 μm stromal bed, and a more than 150 μm thickness stromal bed design may prevent the damage of corneal endothelium.
Collapse
|
13
|
Eidet JR, Utheim ØA, Islam R, Lyberg T, Messelt EB, Dartt DA, Utheim TP. The impact of storage temperature on the morphology, viability, cell number and metabolism of cultured human conjunctival epithelium. Curr Eye Res 2014; 40:30-9. [PMID: 24750037 DOI: 10.3109/02713683.2014.909497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate the effect of storage temperature on the morphology, viability, cell number and metabolism of cultured human conjunctival epithelial cells (HCjEs). MATERIALS AND METHODS Three-day cultured HCjEs were stored at nine different temperatures between 4 °C and 37 °C for four and seven days. Phenotype was assessed by immunofluorescence microscopy, morphology by scanning electron microscopy, viability and cell number by a microplate fluorometer and glucose metabolism by a blood gas analyzer. RESULTS Cultured cells not subjected to storage expressed the conjunctival cytokeratins 7 and 19 and the proliferation marker proliferating cell nuclear antigen. Cell morphology was best maintained following four-day storage between 12 °C and 28 °C and following 12 °C storage after seven days. Assessed by propidium iodide uptake, the percentage of viable cells after four-day storage was maintained only between 12 °C and 28 °C, whereas it had decreased in all other groups (p < 0.05; n = 4). After seven days this percentage was maintained in the 12 °C group, but it had decreased in all other groups, compared to the control (p < 0.05; n = 4). The total number of cells remaining in the cultures after four-day storage, compared to the control, had declined in all groups (p < 0.05; n = 4), except 12 °C and 20 °C groups. Following seven days this number had decreased in all groups (p < 0.01; n = 4), except 12 °C storage. Four-day storage at 12 °C demonstrated superior preservation of the number of calcein-stained viable cells (p < 0.05) and the least accumulation of ethidium homodimer 1-stained dead cells (p < 0.001), compared to storage at 4 °C and 24 °C (n = 6). The total metabolism of glucose to lactate after four-day storage was higher in the 24 °C group compared to 4 °C and 12 °C groups, as well as the control (p < 0.001; n = 3). CONCLUSIONS Storage at 12 °C appears optimal for preserving the morphology, viability and total cell number in stored HCjE cultures. The superior cell preservation at 12 °C may be related to temperature-associated effects on cell metabolism.
Collapse
Affiliation(s)
- Jon R Eidet
- Unit of Regenerative Medicine, Department of Medical Biochemistry, Oslo University Hospital , Oslo , Norway
| | | | | | | | | | | | | |
Collapse
|
14
|
Saghizadeh M, Winkler MA, Kramerov AA, Hemmati DM, Ghiam CA, Dimitrijevich SD, Sareen D, Ornelas L, Ghiasi H, Brunken WJ, Maguen E, Rabinowitz YS, Svendsen CN, Jirsova K, Ljubimov AV. A simple alkaline method for decellularizing human amniotic membrane for cell culture. PLoS One 2013; 8:e79632. [PMID: 24236148 PMCID: PMC3827346 DOI: 10.1371/journal.pone.0079632] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/03/2013] [Indexed: 12/18/2022] Open
Abstract
Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol) amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to standardize decellularized amniotic membrane preparations for expansion of limbal stem cells in vitro before transplantation to patients.
Collapse
Affiliation(s)
- Mehrnoosh Saghizadeh
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Michael A. Winkler
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Andrei A. Kramerov
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David M. Hemmati
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Chantelle A. Ghiam
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Slobodan D. Dimitrijevich
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Dhruv Sareen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Loren Ornelas
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - William J. Brunken
- Departments of Ophthalmology and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, New York, New York, United States of America
| | - Ezra Maguen
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- American Eye Institute, Los Angeles, California, United States of America
| | - Yaron S. Rabinowitz
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Clive N. Svendsen
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- University of California Los Angeles, Los Angeles, California, United States of America
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Inherited Metabolic Disorders, 1 Faculty of Medicine and General Teaching Hospital, Charles University, Prague, Czech Republic
| | - Alexander V. Ljubimov
- Eye Program, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- Departments of Biomedical Sciences, Surgery, and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
15
|
Optimization of Storage Temperature for Cultured ARPE-19 Cells. J Ophthalmol 2013; 2013:216359. [PMID: 24251032 PMCID: PMC3819763 DOI: 10.1155/2013/216359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 12/31/2022] Open
Abstract
Purpose. The establishment of future retinal pigment epithelium (RPE) replacement therapy is partly dependent on the availability of tissue-engineered RPE cells, which may be enhanced by the development of suitable storage methods for RPE. This study investigates the effect of different storage temperatures on the viability, morphology, and phenotype of cultured RPE. Methods. ARPE-19 cells were cultured under standard conditions and stored in HEPES-buffered MEM at nine temperatures (4°C, 8°C, 12°C, 16°C, 20°C, 24°C, 28°C, 32°C, and 37°C) for seven days. Viability and phenotype were assessed by a microplate fluorometer and epifluorescence microscopy, while morphology was analyzed by scanning electron microscopy. Results. The percentage of viable cells preserved after storage was highest in the 16°C group (48.7% ± 9.8%; P < 0.01 compared to 4°C, 8°C, and 24°C–37°C; P < 0.05 compared to 12°C). Ultrastructure was best preserved at 12°C, 16°C, and 20°C. Expression of actin, ZO-1, PCNA, caspase-3, and RPE65 was maintained after storage at 16°C compared to control cells that were not stored. Conclusion. Out of nine temperatures tested between 4°C and 37°C, storage at 12°C, 16°C, and 20°C was optimal for maintenance of RPE cell viability, morphology, and phenotype. The preservation of RPE cells is critically dependent on storage temperature.
Collapse
|
16
|
ANALYSIS OF THE MOLECULAR BIOLOGIC MILIEU OF THE VITREOUS IN PROLIFERATIVE VITREORETINOPATHY. Retina 2013; 33:807-11. [DOI: 10.1097/iae.0b013e31826d350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Abstract
The cornea, the clear window at the front of the eye, transmits light to the retina to enable vision. The corneal surface is renewed by stem cells located at the peripheral limbal region. These cells can be destroyed by a number of factors, including chemical burns, infections, and autoimmune diseases, which result in limbal stem cell deficiency (LSCD), a condition that can lead to blindness. Established therapy for LSCD based on ex vivo expanded limbal epithelial cells is currently at a stage of refinement. Therapy for LSCD is also rapidly evolving to include alternative cell types and clinical approaches as treatment modalities. In the present perspectives chapter, strategies to treat LSCD are discussed and advances in this important field of regenerative medicine are highlighted.
Collapse
Affiliation(s)
- Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|