1
|
Ge C, Selvaganapathy PR, Geng F. Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications. Am J Physiol Cell Physiol 2023; 325:C580-C591. [PMID: 37486066 DOI: 10.1152/ajpcell.00408.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/16/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Bioreactors are advanced biomanufacturing tools that have been widely used to develop various applications in the fields of health care and cellular agriculture. In recent years, there has been a growing interest in the use of bioreactors to enhance the efficiency and scalability of these technologies. In cell therapy, bioreactors have been used to expand and differentiate cells into specialized cell types that can be used for transplantation or tissue regeneration. In cultured meat production, bioreactors offer a controlled and efficient means of producing meat without the need for animal farming. Bioreactors can support the growth of muscle cells by providing the necessary conditions for cell proliferation, differentiation, and maturation, including the provision of oxygen and nutrients. This review article aims to provide an overview of the current state of bioreactor technology in both cell therapy and cultured meat production. It will examine the various bioreactor types and their applications in these fields, highlighting their advantages and limitations. In addition, it will explore the future prospects and challenges of bioreactor technology in these emerging fields. Overall, this review will provide valuable insights for researchers and practitioners interested in using bioreactor technology to develop innovative solutions in the biomanufacturing of therapeutic cells and cultured meat.
Collapse
Affiliation(s)
- Chang Ge
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | | | - Fei Geng
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Ramakrishnan S, Kumar J, Datta SS, Radhakrishnan V, Nair R, Chandy M. Should we adopt an automated de-centralized model of chimeric antigen receptor- T cells manufacturing for low-and middle-income countries? A real world perspective. Front Oncol 2022; 12:1062296. [PMID: 36531042 PMCID: PMC9751310 DOI: 10.3389/fonc.2022.1062296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/11/2022] [Indexed: 11/10/2023] Open
Abstract
Autologous chimeric antigen receptor-T (CAR-T) cell therapy has proven itself as an effective therapeutic modality for cancers, especially hematological malignancies and is emerging as a potential candidate for solid organ cancers as well. However, the accessibility to treatment has been limited due to complexities and costs associated with manufacturing a genetically modified autologous product. The centralized model of CAR-T manufacturing which has emerged as the dominant model in developed nations does not seem well-suited to the needs and realities of the developing economies. In this context, we explore the relative advantages and disadvantages of the two models from a developing nation's perspective.
Collapse
Affiliation(s)
- Sharanya Ramakrishnan
- Department of Clinical Haematology and Cellular Therapies, Tata Medical Center, Kolkata, India
| | - Jeevan Kumar
- Department of Clinical Haematology and Cellular Therapies, Tata Medical Center, Kolkata, India
| | | | - Vivek Radhakrishnan
- Department of Clinical Haematology and Cellular Therapies, Tata Medical Center, Kolkata, India
| | - Reena Nair
- Department of Clinical Haematology and Cellular Therapies, Tata Medical Center, Kolkata, India
| | - Mammen Chandy
- Department of Clinical Haematology and Cellular Therapies, Tata Medical Center, Kolkata, India
| |
Collapse
|
3
|
Kusena JWT, Shariatzadeh M, Studd AJ, James JR, Thomas RJ, Wilson SL. The importance of cell culture parameter standardization: an assessment of the robustness of the 2102Ep reference cell line. Bioengineered 2021; 12:341-357. [PMID: 33380247 PMCID: PMC8806261 DOI: 10.1080/21655979.2020.1870074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022] Open
Abstract
Work undertaken using the embryonic carcinoma 2102Ep line, highlighted the requirement for robust, well-characterized and standardized protocols. A systematic approach utilizing 'quick hit' experiments demonstrated variability introduced into culture systems resulting from slight changes to culture conditions (route A). This formed the basis for longitudinal experiments investigating long-term effects of culture parameters including seeding density and feeding regime (route B).Results demonstrated that specific growth rates (SGR) of passage 59 (P59) cells seeded at 20,000 cells/cm2 and subjected to medium exchange after 48h prior to reseeding at 72h (route B2) on average was marginally higher than, P55 cells cultured under equivalent conditions (route A1); whereby SGR values were (0.021±0.004) and (0.019±0.004). Viability was higher in route B2 over 10 passages with average viability reported as (86.3%±8.1) compared to route A1 (83.3±8.8). The metabolite data demonstrated both culture route B1 (P57 cells seeded at 66,667 cells/cm2) and B2 had consistent-specific metabolite rates (SMR) for glucose, but SMR values of route B1 was consistently lower than route B2 (0.00001 mmol, cell-1.d-1 and 0.000025).Results revealed interactions between phenotype, SMR and feeding regime that may not be accurately reflected by growth rate or observed morphology. This implies that current schemes of protocol control do not adequately account for variability, since key cell characteristics, including phenotype and SMR, change regardless of standardized seeding densities. This highlights the need to control culture parameters through defined protocols, for processes that involve culture for therapeutic use, biologics production, and reference lines.
Collapse
Affiliation(s)
- James Willard Tonderai Kusena
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Adam James Studd
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Jenna Rebekah James
- Stem Cell Glycobiology Group, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Robert James Thomas
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| | - Samantha Loiuse Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK
| |
Collapse
|
4
|
Baudequin T, Nyland R, Ye H. Objectives, benefits and challenges of bioreactor systems for the clinical-scale expansion of T lymphocyte cells. Biotechnol Adv 2021; 49:107735. [PMID: 33781889 DOI: 10.1016/j.biotechadv.2021.107735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Cell therapies based on T cell have gathered interest over the last decades for treatment of cancers, becoming recently the most investigated lineage for clinical trials. Although results of adoptive cell therapies are very promising, obtaining large batches of T cell at clinical scale is still challenging nowadays. We propose here a review study focusing on how bioreactor systems could increase expansion rates of T cell culture specifically towards efficient, reliable and reproducible cell therapies. After describing the specificities of T cell culture, in particular activation, phenotypical characterization and cell density considerations, we detail the main objectives of bioreactors in this context, namely scale-up, GMP-compliance and reduced time and costs. Then, we report recent advances on the different classes of bioreactor systems commonly investigated for non-adherent cell expansion, in comparison with the current "gold standard" of T cell culture (flasks and culture bag). Results obtained with hollow fibres, G-Rex® flasks, Wave bioreactor, multiple-step bioreactors, spinner flasks as well as original homemade designs are discussed to highlight advantages and drawbacks in regards to T cells' specificities. Although there is currently no consensus on an optimal bioreactor, overall, most systems reviewed here can improve T cell culture towards faster, easier and/or cheaper protocols. They also offer strong outlooks towards automation, process control and complete closed systems, which could be mandatory developments for a massive clinical breakthrough. However, proper controls are sometimes lacking to conclude clearly on the features leading to the progresses regarding cell expansion, and the field could benefit from process engineering methods, such as quality by design, to perform multi parameters studies and face these challenges.
Collapse
Affiliation(s)
- Timothée Baudequin
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | - Robin Nyland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
5
|
Shariatzadeh M, Chandra A, Wilson SL, McCall MJ, Morizur L, Lesueur L, Chose O, Gepp MM, Schulz A, Neubauer JC, Zimmermann H, Abranches E, Man J, O’Shea O, Stacey G, Hewitt Z, Williams DJ. Distributed automated manufacturing of pluripotent stem cell products. THE INTERNATIONAL JOURNAL, ADVANCED MANUFACTURING TECHNOLOGY 2020; 106:1085-1103. [PMID: 31983799 PMCID: PMC6954896 DOI: 10.1007/s00170-019-04516-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/27/2019] [Indexed: 05/04/2023]
Abstract
Establishing how to effectively manufacture cell therapies is an industry-level problem. Decentralised manufacturing is of increasing importance, and its challenges are recognised by healthcare regulators with deviations and comparability issues receiving specific attention from them. This paper is the first to report the deviations and other risks encountered when implementing the expansion of human pluripotent stem cells (hPSCs) in an automated three international site-decentralised manufacturing setting. An experimental demonstrator project expanded a human embryonal carcinoma cell line (2102Ep) at three development sites in France, Germany and the UK using the CompacT SelecT (Sartorius Stedim, Royston, UK) automated cell culture platform. Anticipated variations between sites spanned material input, features of the process itself and production system details including different quality management systems and personnel. Where possible, these were pre-addressed by implementing strategies including standardisation, cell bank mycoplasma testing and specific engineering and process improvements. However, despite such measures, unexpected deviations occurred between sites including software incompatibility and machine/process errors together with uncharacteristic contaminations. Many only became apparent during process proving or during the process run. Further, parameters including growth rate and viability discrepancies could only be determined post-run, preventing 'live' corrective measures. The work confirms the critical nature of approaches usually taken in Good Manufacturing Practice (GMP) manufacturing settings and especially emphasises the requirement for monitoring steps to be included within the production system. Real-time process monitoring coupled with carefully structured quality systems is essential for multiple site working including clarity of decision-making roles. Additionally, an over-reliance upon post-process visual microscopic comparisons has major limitations; it is difficult for non-experts to detect deleterious culture changes and such detection is slow.
Collapse
Affiliation(s)
- Maryam Shariatzadeh
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Amit Chandra
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
- Present Address: Yposkesi, 26, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Samantha L Wilson
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Mark J McCall
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Lise Morizur
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Léa Lesueur
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Olivier Chose
- CECS/I-STEM, 28, rue Henri Auguste-Desbruères, 91100 Corbeil-Essonnes, France
| | - Michael M. Gepp
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
| | - André Schulz
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Present Address: Knappschaft Eye Clinic Sulzbach, An der Klinik 10, 66280 Sulzbach, Germany
| | - Julia C. Neubauer
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
| | - Heiko Zimmermann
- Fraunhofer Institute for Biomedical Engineering (IBMT), Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, 97082 Würzburg, Germany
- Saarland University, 66123 Saarbruecken, Germany
- Universidad Católica del Norte, Coquimbo, Chile
| | - Elsa Abranches
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Jennifer Man
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
- Present Address: Oxfordshire, UK
| | - Orla O’Shea
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
| | - Glyn Stacey
- NISBC, Blanche Lane, South Mimms, Potters Bar, EN6 3QG UK
- Present Address: Adaptimmune, 60 Jubilee Avenue, Milton Park, Abingdon, Oxfordshire OX14 4RX UK
| | - Zoe Hewitt
- Centre for Stem Cell Biology (CSCB), University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - David J Williams
- Centre for Biological Engineering, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| |
Collapse
|
6
|
Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions. Sci Rep 2019; 9:10646. [PMID: 31337830 PMCID: PMC6650487 DOI: 10.1038/s41598-019-47123-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Dysfunction or death of retinal pigment epithelial (RPE) cells is involved in some forms of Retinitis Pigmentosa and in age-related macular degeneration (AMD). Since there is no cure for most patients affected by these diseases, the transplantation of RPE cells derived from human pluripotent stem cells (hPSCs) represents an attractive therapeutic alternative. First attempts to transplant hPSC-RPE cells in AMD and Stargardt patients demonstrated the safety and suggested the potential efficacy of this strategy. However, it also highlighted the need to upscale the production of the cells to be grafted in order to treat the millions of potential patients. Automated cell culture systems are necessary to change the scale of cell production. In the present study, we developed a protocol amenable for automation that combines in a sequential manner Nicotinamide, Activin A and CHIR99021 to direct the differentiation of hPSCs into RPE cells. This novel differentiation protocol associated with the use of cell culture robots open new possibilities for the production of large batches of hPSC-RPE cells while maintaining a high cell purity and functionality. Such methodology of cell culture automation could therefore be applied to various differentiation processes in order to generate the material suitable for cell therapy.
Collapse
|
7
|
Tech news: stem cells for modeling and curing disease. Biotechniques 2018; 65:305-310. [PMID: 30477326 DOI: 10.2144/btn-2018-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Freya Leask explores developments in cell culture and stem cell research that are revolutionizing how diseases are studied and treated.
Collapse
|
8
|
Digiusto DL, Melsop K, Srivastava R, Tran CAT. Proceedings of the first academic symposium on developing, qualifying and operating a cell and gene therapy manufacturing facility. Cytotherapy 2018; 20:1486-1494. [PMID: 30377039 DOI: 10.1016/j.jcyt.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 12/25/2022]
Abstract
A significant portion of the more than 1000 candidate cell and gene therapy products currently under clinical investigation (clinicaltrials.gov) are born out of academic research centers affiliated with universities, hospitals and non-profit research institutions. Supporting these efforts are myriad academic clinical materials production facilities with more than 40 such facilities currently operational in the United States alone. In March 2018, Stanford University's Laboratory for Cell and Gene Therapy held a symposium with the leaders and staff of more than 25 similar facilities to discuss the collective experience in developing, qualifying and operating cell and gene therapy manufacturing facilities according to current Good Manufacturing Practices. Topics included facility design, construction, staffing and operations and compliance. Leaders from several institutions gave overviews of the history of development of the facilities and discussed challenges and opportunities they had experienced over the past 10-20 years of operations. Working sessions were also held to discuss specific aspects of Process Development, Manufacturing, Quality Systems, Regulatory Affairs and Business Development with all participants contributing to the discussions. We summarize here the findings of this inaugural meeting with an emphasis on best practices and suggested guidelines for operations.
Collapse
Affiliation(s)
- David L Digiusto
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine at Stanford University, Stanford, CA USA
| | - Kathryn Melsop
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine at Stanford University, Stanford, CA USA
| | - Rashi Srivastava
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine at Stanford University, Stanford, CA USA
| | - Chy-Anh T Tran
- Laboratory for Cell and Gene Medicine, Stanford University School of Medicine at Stanford University, Stanford, CA USA
| |
Collapse
|
9
|
Gomes-Silva D, Ramos CA. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 2018; 13:10.1002/biot.201700097. [PMID: 28960810 PMCID: PMC5966018 DOI: 10.1002/biot.201700097] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Indexed: 11/08/2022]
Abstract
The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed.
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
10
|
Wang X, Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16015. [PMID: 27347557 PMCID: PMC4909095 DOI: 10.1038/mto.2016.15] [Citation(s) in RCA: 428] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality.
Collapse
Affiliation(s)
- Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Isabelle Rivière
- Cell Therapy and Cell Engineering Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
11
|
Heathman TR, Rafiq QA, Chan AK, Coopman K, Nienow AW, Kara B, Hewitt CJ. Characterization of human mesenchymal stem cells from multiple donors and the implications for large scale bioprocess development. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|