1
|
Cartaxo AL, Fernandes-Platzgummer A, Rodrigues CA, Melo AM, Tecklenburg K, Margreiter E, Day RM, da Silva CL, Cabral JM. Developing a Cell-Microcarrier Tissue-Engineered Product for Muscle Repair Using a Bioreactor System. Tissue Eng Part C Methods 2023; 29:583-595. [PMID: 37842845 PMCID: PMC10714258 DOI: 10.1089/ten.tec.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Fecal incontinence, although not life-threatening, has a high impact on the economy and patient quality of life. So far, available treatments are based on both surgical and nonsurgical approaches. These can range from changes in diet, to bowel training, or sacral nerve stimulation, but none of which provides a long-term solution. New regenerative medicine-based therapies are emerging, which aim at regenerating the sphincter muscle and restoring continence. Usually, these consist of the administration of a suspension of expanded skeletal-derived muscle cells (SkMDCs) to the damaged site. However, this strategy often results in a reduced cell viability due to the need for cell harvesting from the expansion platform, as well as the non-native use of a cell suspension to deliver the anchorage-dependent cells. In this study, we propose the proof-of-concept for the bioprocessing of a new cell delivery method for the treatment of fecal incontinence, obtained by a scalable two-step process. First, patient-isolated SkMDCs were expanded using planar static culture systems. Second, by using a single-use PBS-MINI Vertical-Wheel® bioreactor, the expanded SkMDCs were combined with biocompatible and biodegradable (i.e., directly implantable) poly(lactic-co-glycolic acid) microcarriers prepared by thermally induced phase separation. This process allowed for up to 80% efficiency of SkMDCs to attach to the microcarriers. Importantly, SkMDCs were viable during all the process and maintained their myogenic features (e.g., expression of the CD56 marker) after adhesion and culture on the microcarriers. When SkMDC-containing microcarriers were placed on a culture dish, cells were able to migrate from the microcarriers onto the culture surface and differentiate into multinucleated myotubes, which highlights their potential to regenerate the damaged sphincter muscle after administration into the patient. Overall, this study proposes an innovative method to attach SkMDCs to biodegradable microcarriers, which can provide a new treatment for fecal incontinence.
Collapse
Affiliation(s)
- Ana Luísa Cartaxo
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A.V. Rodrigues
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M. Melo
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Richard M. Day
- Centre for Precision Healthcare, Division of Medicine, University College London, London, United Kingdom
| | - Cláudia L. da Silva
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Associate Laboratory, Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Spinelli A, Laurenti V, Carrano FM, Gonzalez-Díaz E, Borycka-Kiciak K. Diagnosis and Treatment of Obstetric Anal Sphincter Injuries: New Evidence and Perspectives. J Clin Med 2021; 10:3261. [PMID: 34362045 PMCID: PMC8347477 DOI: 10.3390/jcm10153261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Perineal injury during childbirth is a common event with important morbidity associated in particular with third-and-fourth degree perineal tears (also referred to as obstetric anal sphincter injuries-OASIS). Early diagnosis of these damages is mandatory to define a prompt therapeutic strategy and thus avoid the development of late-onset consequences, such as faecal incontinence. For this purpose, various diagnostic exams can be performed after a thorough clinical examination. The management of OASIS includes several measures and should be individualized according to the timing and features of the clinical presentation.
Collapse
Affiliation(s)
- Antonino Spinelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (V.L.); (F.M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Virginia Laurenti
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (V.L.); (F.M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Francesco Maria Carrano
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Milan, Italy; (V.L.); (F.M.C.)
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Enrique Gonzalez-Díaz
- Pelvic Floor Unit, Department of Obstetrics and Gynaecology, Complejo Asistencial Universitario de León (CAULE), C/Altos de Nava S/N, 24080 León, Spain;
- Department of Obstetrics and Gynaecology, Complejo Asistencial Universitario de León (CAULE), C/Altos de Nava S/N, 24080 León, Spain
| | - Katarzyna Borycka-Kiciak
- Department of Colorectal, General and Oncological Surgery, Centre of Postgraduate Medical Education, 80, Ceglowska Street, 01810 Warsaw, Poland;
| |
Collapse
|
4
|
Gräs S, Tolstrup CK, Lose G. Regenerative medicine provides alternative strategies for the treatment of anal incontinence. Int Urogynecol J 2016; 28:341-350. [PMID: 27311602 DOI: 10.1007/s00192-016-3064-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Anal incontinence is a common disorder but current treatment modalities are not ideal and the development of new treatments is needed. The aim of this review was to identify the existing knowledge of regenerative medicine strategies in the form of cellular therapies or bioengineering as a treatment for anal incontinence caused by anal sphincter defects. METHODS PubMed was searched for preclinical and clinical studies in English published from January 2005 to January 2016. RESULTS Animal studies have demonstrated that cellular therapy in the form of local injections of culture-expanded skeletal myogenic cells stimulates repair of both acute and 2 - 4-week-old anal sphincter injuries. The results from a small clinical trial with ten patients and a case report support the preclinical findings. Animal studies have also demonstrated that local injections of mesenchymal stem cells stimulate repair of sphincter injuries, and a complex bioengineering strategy for creation and implantation of an intrinsically innervated internal anal sphincter construct has been successfully developed in a series of animal studies. CONCLUSION Cellular therapies with myogenic cells and mesenchymal stem cells and the use of bioengineering technology to create an anal sphincter are new potential strategies to treat anal incontinence caused by anal sphincter defects, but the clinical evidence is extremely limited. The use of culture-expanded autologous skeletal myogenic cells has been most intensively investigated and several clinical trials were ongoing at the time of this report. The cost-effectiveness of such a therapy is an issue and muscle fragmentation is suggested as a simple alternative.
Collapse
Affiliation(s)
- Søren Gräs
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Cæcilie Krogsgaard Tolstrup
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Gunnar Lose
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| |
Collapse
|
5
|
Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM. Biomaterials for hollow organ tissue engineering. FIBROGENESIS & TISSUE REPAIR 2016; 9:3. [PMID: 27014369 PMCID: PMC4806416 DOI: 10.1186/s13069-016-0040-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials.
Collapse
Affiliation(s)
- Eseelle K. Hendow
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Pauline Guhmann
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Bernice Wright
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Panagiotis Sofokleous
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Nina Parmar
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Richard M. Day
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| |
Collapse
|