1
|
Yao Q, Li H, Fan L, Zhang Y, Zhao S, Zheng N, Wang J. Dietary Regulation of the Crosstalk between Gut Microbiome and Immune Response in Inflammatory Bowel Disease. Foods 2021; 10:foods10020368. [PMID: 33567698 PMCID: PMC7915342 DOI: 10.3390/foods10020368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD), a chronic, recurring inflammatory response, is a growing global public health issue. It results from the aberrant crosstalk among environmental factors, gut microbiota, the immune system, and host genetics, with microbiota serving as the core of communication for differently-sourced signals. In the susceptible host, dysbiosis, characterized by the bloom of facultative anaerobic bacteria and the decline of community diversity and balance, can trigger an aberrant immune response that leads to reduced tolerance against commensal microbiota. In IBD, such dysbiosis has been profoundly proven in animal models, as well as clinic data analysis; however, it has not yet been conclusively ascertained whether dysbiosis actually promotes the disease or is simply a consequence of the inflammatory disorder. Better insight into the complex network of interactions between food, the intestinal microbiome, and host immune response will, therefore, contribute significantly to the diagnosis, treatment, and management of IBD. In this article, we review the ways in which the mutualistic circle of dietary nutrients, gut microbiota, and the immune system becomes anomalous during the IBD process, and discuss the roles of bacterial factors in shaping the intestinal inflammatory barrier and adjusting immune capacity.
Collapse
Affiliation(s)
- Qianqian Yao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Li
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Y.); (H.L.); (L.F.); (Y.Z.); (S.Z.); (N.Z.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
2
|
Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. Br J Nutr 2014; 111:1549-63. [PMID: 24521520 DOI: 10.1017/s0007114513004352] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Common beans contain non-digestible fermentable components (SCFA precursors) and phenolic compounds (phenolic acids, flavonoids and anthocyanins) with demonstrated antioxidant and anti-inflammatory potential. The objective of the present study was to assess the in vivo effect of cooked whole-bean flours, with differing phenolic compound levels and profiles, in a mouse model of acute colitis. C57BL/6 mice were fed a 20 % navy bean or black bean flour-containing diet or an isoenergetic basal diet (BD) for 2 weeks before the induction of experimental colitis via 7 d dextran sodium sulphate (DSS, 2 % (w/v) in the drinking-water) exposure. Compared with the BD, both bean diets increased caecal SCFA and faecal phenolic compound concentrations (P< 0·05), which coincided with both beneficial and adverse effects on colonic and systemic inflammation. On the one hand, bean diets reduced mRNA expression of colonic inflammatory cytokines (IL-6, IL-9, IFN-γ and IL-17A) and increased anti-inflammatory IL-10 (P< 0·05), while systemically reduced circulating cytokines (IL-1β, TNFα, IFNγ, and IL-17A, P< 0·05) and DSS-induced oxidative stress. On the other hand, bean diets enhanced DSS-induced colonic damage as indicated by an increased histological injury score and apoptosis (cleaved caspase-3 and FasL mRNA expression) (P< 0·05). In conclusion, bean-containing diets exerted both beneficial and adverse effects during experimental colitis by reducing inflammatory biomarkers both locally and systemically while aggravating colonic mucosal damage. Further research is required to understand the mechanisms through which beans exert their effects on colonic inflammation and the impact on colitis severity in human subjects.
Collapse
|