1
|
Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. SCI 2021. [DOI: 10.3390/sci3010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
Abstract
Toll-like receptor 5 ligand, flagellin, and vascular adhesion protein 1 (VAP-1) are involved in non-alcoholic fatty liver disease. This study aimed to determine whether VAP-1 mediates flagellin-induced hepatic fat accumulation. The effects of flagellin on adipocyte VAP-1 expression were first studied in vitro. Then, flagellin (100 ng/mouse) or saline was intraperitoneally injected into C57BL/6J (WT) and C57BL/6-Aoc3-/- (VAP-1 KO) mice on a high-fat diet twice a week every 2 weeks for 10 weeks. After that, the effects on inflammation, insulin signaling, and metabolism were studied in liver and adipose tissues. Hepatic fat was quantified histologically and biochemically. Because flagellin challenge increased VAP-1 expression in human adipocytes, we used VAP-1 KO mice to determine whether VAP-1 regulates the inflammatory and metabolic effects of flagellin in vivo. In mice, VAP-1 mediated flagellin-induced inflammation, leukocyte infiltration, and lipolysis in visceral adipose tissue. Consequently, an increased release of glycerol led to hepatic steatosis in WT, but not in KO mice. Flagellin-induced hepatic fibrosis was not mediated by VAP-1. VAP-1 KO mice harbored more inflammation-related microbes than WT mice, while flagellin did not affect the gut microbiota. Our results suggest that by acting on visceral adipose tissue, flagellin increased leukocyte infiltration that induced lipolysis. Further, the released glycerol participated in hepatic fat accumulation. In conclusion, the results describe that gut microbial flagellin through VAP-1 induced hepatic steatosis.
Collapse
|
2
|
Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. SCI 2019. [DOI: 10.3390/sci1030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 5 ligand, flagellin, and Vascular Adhesion Protein-1 (VAP-1) are involved in non-alcoholic fatty liver disease (NAFLD). This study aimed to determine whether VAP-1 mediates flagellin-induced hepatic fat accumulation. The effects of flagellin on adipocyte VAP-1 expression were first studied in vitro. Then, flagellin (100 ng/mouse) or saline was intraperitoneally injected to C57BL/6J WT and C57BL/6-Aoc3-/- (VAP-1 KO) mice on high-fat diet twice a week every two weeks for 10-weeks. After that, the effects on inflammation, insulin signaling, and metabolism were studied in liver and adipose tissues. Hepatic fat was quantified histologically and biochemically. Because flagellin challenge increased VAP-1 expression in human adipocytes, we used VAP-1 KO mice to determine whether VAP-1 regulates the inflammatory and metabolic effects of flagellin in vivo. In mice, VAP-1 mediated flagellin-induced inflammation, leukocyte infiltration and lipolysis in visceral adipose tissue. Consequently, increased release of glycerol led to hepatic steatosis in WT but not KO mice. Flagellin-induced hepatic fibrosis was not mediated by VAP-1. VAP-1 KO mice harbored more inflammation-related microbes than WT, while flagellin did not affect the gut microbiota. Our results suggest that by acting on visceral adipose tissue, flagellin increased leukocyte infiltration that induced lipolysis. Further, the released glycerol participated in hepatic fat accumulation. In conclusion, the results describe that gut microbial flagellin through VAP-1 induced hepatic steatosis.
Collapse
|
3
|
Pekkala S, Keskitalo A, Kettunen E, Lensu S, Nykänen N, Kuopio T, Ritvos O, Hentilä J, Nissinen TA, Hulmi JJ. Blocking Activin Receptor Ligands Is Not Sufficient to Rescue Cancer-Associated Gut Microbiota-A Role for Gut Microbial Flagellin in Colorectal Cancer and Cachexia? Cancers (Basel) 2019; 11:cancers11111799. [PMID: 31731747 PMCID: PMC6896205 DOI: 10.3390/cancers11111799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) and cachexia are associated with the gut microbiota and microbial surface molecules. We characterized the CRC-associated microbiota and investigated whether cachexia affects the microbiota composition. Further, we examined the possible relationship between the microbial surface molecule flagellin and CRC. CRC cells (C26) were inoculated into mice. Activin receptor (ACVR) ligands were blocked, either before tumor formation or before and after, to increase muscle mass and prevent muscle loss. The effects of flagellin on C26-cells were studied in vitro. The occurrence of similar phenomena were studied in murine and human tumors. Cancer modulated the gut microbiota without consistent effects of blocking the ACVR ligands. However, continued treatment for muscle loss modified the association between microbiota and weight loss. Several abundant microbial taxa in cancer were flagellated. Exposure of C26-cells to flagellin increased IL6 and CCL2/MCP-1 mRNA and IL6 excretion. Murine C26 tumors expressed more IL6 and CCL2/MCP-1 mRNA than C26-cells, and human CRC tumors expressed more CCL2/MCP-1 than healthy colon sites. Additionally, flagellin decreased caspase-1 activity and the production of reactive oxygen species, and increased cytotoxicity in C26-cells. Conditioned media from flagellin-treated C26-cells deteriorated C2C12-myotubes and decreased their number. In conclusion, cancer increased flagellated microbes that may promote CRC survival and cachexia by inducing inflammatory proteins such as MCP-1. Cancer-associated gut microbiota could not be rescued by blocking ACVR ligands.
Collapse
Affiliation(s)
- Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
- Correspondence: ; Tel.: +358-45-358-2898
| | - Anniina Keskitalo
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20500 Turku, Finland;
- Department of Clinical Microbiology, Turku University Hospital, 20500 Turku, Finland
| | - Emilia Kettunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Noora Nykänen
- Department of Pathology, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland; (N.N.); (T.K.)
| | - Teijo Kuopio
- Department of Pathology, Central Finland Health Care District, Keskussairaalantie 19, 40620 Jyväskylä, Finland; (N.N.); (T.K.)
- Department of Biological and Environmental Science, University of Jyväskylä, 40620 Jyväskylä, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00100 Helsinki, Finland;
| | - Jaakko Hentilä
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Tuuli A. Nissinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40620 Jyväskylä, Finland; (E.K.); (S.L.); (J.H.); (T.A.N.); (J.J.H.)
| |
Collapse
|
4
|
Saint-Pastou Terrier C, Gasque P. Bone responses in health and infectious diseases: A focus on osteoblasts. J Infect 2017; 75:281-292. [PMID: 28778751 DOI: 10.1016/j.jinf.2017.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Historically, bone was thought to be immunologically inactive with the sole function of supporting locomotion and ensuring stromaness functions as a major lymphoid organ. However, a myriad of pathogens (bacteria such as staphylococcus as well as viruses including alphaviruses, HIV or HCV) can invade the bone. These pathogens can cause apoptosis, autophagy and necrosis of osteoblasts and lead to lymphopenia and immune paralysis. There are now several detailed studies on how osteoblasts contribute to innate immune and inflammatory responses; indeed, osteoblasts in concert with resident macrophages can engage an armory of defense mechanisms capable of detecting and controlling pathogen evasion mechanisms. Osteoblasts can express the so-called pattern recognition receptors such as TOLL-like receptors involved in the detection for example of lipids and unique sugars (polysaccharides and polyriboses) expressed by bacteria or viruses (e.g. LPS and RNA respectively). Activated osteoblasts can produce interferon type I, cytokines, chemokines and interferon-stimulated proteins through autocrine and paracrine mechanisms to control for viral replication and to promote phagocytosis or lysis of bacteria for example by defensins. Uncontrolled and sustained innate immune activation of infected osteoblasts will also lead to an imbalance in the production of osteoclastogenic factors such as RANKL and osteoprotegerin involved in bone repair.
Collapse
Affiliation(s)
- Cécile Saint-Pastou Terrier
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France; Laboratoire de Biologie, secteur Laboratoire d'immunologie clinique et expérimentale ZOI (LICE OI), CHU La Réunion site Félix Guyon, St Denis, La Réunion, France.
| |
Collapse
|