1
|
Dias CC, Caetano CFF, Costa GAJ, Coelho AA, Lemos JVM, de Paula DS, Lima JPM, de Barros Silva PG. Treatment with cyclosporine attenuates the inflammatory process and severity of bisphosphonate-induced osteonecrosis of the jaws in rats. Inflammopharmacology 2025; 33:2007-2022. [PMID: 39992590 DOI: 10.1007/s10787-025-01673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Osteonecrosis usually occurs with necrotic bone exposure in the mandible asymptomatically for long periods but can evolve to present pain, fistula, odor, bleeding, and suppuration. OBJECTIVE To evaluate the influence of cyclosporine treatment and its influence on osteonecrosis in a rat model. METHODS The animals were randomly divided into 05 groups (n = 8/group). The negative control group (SAL), positive control group treated with zoledronic acid (ZA + SAL), and test groups were treated with cyclosporine A (CsA) at 5, 2.5, and 1.25 mg/kg and treated with ZA. The left lower second molars were extracted. The animals were euthanized 1 month after tooth extraction. Digital radiographs, histological slides, and immunoexpression of IL-2, IL-6, TNF-α, PPAR-γ, c-Fos, c-Jun, FoxP3, and INF-γ were analyzed. Western blot assays were performed to investigate the expression of RORyT. In addition, hematological analysis, body mass variation, and femur mechanical tests were performed. RESULTS Radiographs showed that in the groups treated with ZA, there was an increase in the radiolucent area suggestive of osteonecrosis, and treatment with cyclosporine did not reduce this parameter (p < 0.001). In the western blot analysis, animals treated with ZA showed increased expression of RORyT (1.887 ± 0.114) compared to the saline group (0.799 ± 0.107), and treatment with the highest dose of cyclosporine (0.652 ± 0.070) reduced this expression (p < 0.001). DISCUSSION Studies have observed bone health in animals treated with CsA. Treatment with this immunosuppressant showed a bone-protective effect of CsA, which corroborates our findings. CONCLUSION Treatment with CsA reduced the immunoexpression of pro-inflammatory cytokines such as IL-2 and TNF-α and decreased the expression of RORyT.
Collapse
Affiliation(s)
- Camila Costa Dias
- Post-Graduate Program in Dental Sciences, Unichristus, Fortaleza, Brazil
| | | | | | - Antônio Alexandre Coelho
- Department of Dentistry, Unichristus, Vereador Paulo Mamede, 130 - Cocó, Fortaleza, CE, 60192-350, Brazil
| | - José Vitor Mota Lemos
- Department of Dentistry, Unichristus, Vereador Paulo Mamede, 130 - Cocó, Fortaleza, CE, 60192-350, Brazil
| | - Dayrine Silveira de Paula
- Department of Dentistry, Unichristus, Vereador Paulo Mamede, 130 - Cocó, Fortaleza, CE, 60192-350, Brazil
- Post-Graduate Program in Dental Sciences, Unichristus, Fortaleza, Brazil
| | - Juliana Paiva Marques Lima
- Department of Dentistry, Unichristus, Vereador Paulo Mamede, 130 - Cocó, Fortaleza, CE, 60192-350, Brazil
- Post-Graduate Program in Dental Sciences, Unichristus, Fortaleza, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dentistry, Unichristus, Vereador Paulo Mamede, 130 - Cocó, Fortaleza, CE, 60192-350, Brazil.
- Post-Graduate Program in Dental Sciences, Unichristus, Fortaleza, Brazil.
| |
Collapse
|
2
|
Tamer Z, Hanudel MR, Salusky IB. Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) in Pediatric Kidney Transplant Recipients. Pediatr Transplant 2025; 29:e70021. [PMID: 39837763 DOI: 10.1111/petr.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Kidney transplantation remains the gold standard treatment for end-stage kidney disease (ESKD), effectively alleviating numerous comorbidities and offering a substantial survival advantage over long-term dialysis. Despite advancements in immunosuppressive regimens and improvements in graft and patient survival rates, extended patient longevity brings an accumulating burden and complexity of bone disease in this population, which often goes underrecognized. The present study reviews the pathophysiology of CKD-MBD in pediatric KTR, focusing on the progression of bone disease before and after transplantation. We aim to enhance understanding of available screening options, highlighting their advantages and limitations, to support more informed decision-making in CKD-MBD management.
Collapse
Affiliation(s)
- Zenab Tamer
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mark R Hanudel
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Isidro B Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Andraca Harrer J, Fulton TM, Sangadala S, Kaiser JM, Devereaux EJ, Oliver C, Presciutti SM, Boden SD, Willett NJ. Local FK506 delivery induces osteogenesis in rat bone defect and rabbit spine fusion models. Bone 2024; 187:117195. [PMID: 39002838 DOI: 10.1016/j.bone.2024.117195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 enhanced osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge produced consistent bone bridging of a critically sized rat femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized to treat a variety of spine disorders.
Collapse
Affiliation(s)
- Julia Andraca Harrer
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon 1505 Franklin Blvd, Eugene, OR 97403, USA
| | - Travis M Fulton
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Sreedhara Sangadala
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Jarred M Kaiser
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Emily J Devereaux
- Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Colleen Oliver
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Steven M Presciutti
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Scott D Boden
- Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Nick J Willett
- Atlanta VA Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Orthopaedics, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon 1505 Franklin Blvd, Eugene, OR 97403, USA.
| |
Collapse
|
4
|
Otake K, Azetsu Y, Chatani M, Karakawa A, Nishida S, Hirayama A, Kobayashi R, Sakai N, Suzuki N, Takami M. Abnormal bone regeneration induced by FK506 in medaka fin revealed by in vivo imaging. J Oral Biosci 2024; 66:381-390. [PMID: 38423180 DOI: 10.1016/j.job.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Bone tissue in bony fish demonstrates a remarkable ability to regenerate, particularly evident following induction of extensive bone defects, such as fin amputation. This regenerative capacity has been reported to be promoted by the immunosuppressant FK506, yet its precise effects on bone cells during fin regeneration remains insufficiently elucidated. This study aims to investigate the effects of FK506 treatment on bone morphology, osteoblasts, and osteoclasts in the bony fin rays of osterix promoter-DsRed/TRAP promoter-EGFP double transgenic (Tg) medaka. METHODS The caudal fin of double Tg medaka was amputated, followed by a 20-day treatment with FK506 (1.0 μg/ml) to observe its effects on fin regeneration. Additionally, the regenerated caudal fin area underwent evaluation using genetic analysis and cell proliferation assays. RESULTS FK506 treatment significantly increased osterix-positive osteoblast formation, resulting in both a significantly longer fin length and fewer joints in the bony fin rays formed during fin regeneration. Notably, TRAP-positive osteoclast formation and bone resorption were observed to occur primarily during the latter stages of fin regeneration. Furthermore, while the expression levels of osteoblast-related genes in the regenerated area remained unchanged following FK506 treatment, a heightened cell proliferation was observed at the tip of the fin. CONCLUSIONS Our findings suggest that treatment with FK506 promotes bone regeneration by increasing the number of osteoblasts in the amputated area of the fin. However, long-term treatment disrupts regular bone metabolism by inducing abnormal osteoclast formation.
Collapse
Affiliation(s)
- Kai Otake
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Endodontology, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145- 8515, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Yuki Azetsu
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Masahiro Chatani
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Akiko Karakawa
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Satoko Nishida
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Department of Medical and Dental Cooperative Dentistry, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145-8515, Japan
| | - Aiko Hirayama
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Rina Kobayashi
- Division of Toxicology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Nobuhiro Sakai
- Department of Dental Education, Showa University Graduate School of Dentistry, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Noriyuki Suzuki
- Department of Endodontology, Graduate School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ota, Tokyo, 145- 8515, Japan
| | - Masamichi Takami
- Department of Pharmacology, Graduate School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| |
Collapse
|
5
|
Tao ZS, Ma T, Yang M. Cyclosporine a inhibits bone regeneration and induces bone loss in a rat model. Int Immunopharmacol 2024; 132:111951. [PMID: 38552293 DOI: 10.1016/j.intimp.2024.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
Cyclosporine A (CSA) is an immunosuppressant that has been extensively studied for its side effects on inhibiting osseointegration of titanium implants. However, the impact of CSA on bone healing in postmenopausal osteoporosis remains unknown. Therefore, this study aimed to investigate the effect of CSA on bone repair in an ovariectomized (OVX) rat model through both in vitro and in vivo experiments. We examined the interventions of CSA on osteoblast progenitor cells MC3T3-E1 and assessed their effects on biological function using RT-qPCR, CCK-8 assay, alizarin red staining, and alkaline phosphatase staining. Furthermore, we evaluated the effects of CSA on bone regeneration and bone mass in both OVX rat models and femoral diaphysis bone defect models. The results from the CCK-8 experiment indicated a positive influence of experimental doses of CSA on osteogenic differentiation of MC3T3-E1 cells. ALP expression levels and calcified nodules were also evaluated, suggesting that CSA intervention promoted osteogenic differentiation in MC3T3-E1 cells. Additionally, specific gene expressions including OPN, Runx-2, OC, and Col1a1 were up-regulated after CSA intervention. Biomechanical parameters aligned with histological analysis as well as micro-CT scans confirmed worse bone microstructure and strength following CSA intervention. Our findings preliminarily suggest that whether it is normal or osteoporotic bones, CSA has adverse effects on bone health which are associated with elevated-bone turnover.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China; Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China.
| | - Tao Ma
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu 241001, Anhui, PR China
| |
Collapse
|
6
|
Deng J, Moskalyk M, Hou W, Zuo QK, Luo J. Pharmacological prevention of bone loss and fractures following solid organ transplantations: Protocol for a systematic review and network meta-analysis. PLoS One 2024; 19:e0302566. [PMID: 38669283 PMCID: PMC11051654 DOI: 10.1371/journal.pone.0302566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Solid organ transplant (SOT) recipients can experience bone loss caused by underlying conditions and the use of immunosuppressants. As a result, SOT recipients are at risk for decreased bone mineral density (BMD) and increased fracture incidences. We propose a network meta-analysis (NMA) that incorporates all available randomized control trial (RCT) data to provide the most comprehensive ranking of anti-osteoporotic interventions according to their ability to decrease fracture incidences and increase BMD in SOT recipients. METHODS We will search MEDLINE, EMBASE, Web of Science, CINAHL, CENTRAL and CNKI for relevant RCTs that enrolled adult SOT recipients, assessed anti-osteoporotic therapies, and reported relevant outcomes. Title and full-text screening as well as data extraction will be performed in-duplicate. We will report changes in BMD as weighted or standardized mean differences, and fracture incidences as risk ratios. SUCRA scores will be used to provide rankings of interventions, and quality of evidence will be examined using RoB2 and CINeMA. DISCUSSIONS To our knowledge, this systematic review and NMA will be the most comprehensive quantitative analysis regarding the management of bone loss and fractures in SOT recipients. Our analysis should be able to provide physicians and patients with an up-to-date recommendation for pharmacotherapies in reducing incidences of bone loss and fractures associated with SOT. The findings of the NMA will be disseminated in a peer-reviewed journal.
Collapse
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Myron Moskalyk
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Wenteng Hou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Qi Kang Zuo
- UBC Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jinyu Luo
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Rekima S, Gautier N, Bonnamy S, Rochet N, Olivier F. Biphasic Calcium Phosphate and Activated Carbon Microparticles in a Plasma Clot for Bone Reconstruction and In Situ Drug Delivery: A Feasibility Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1749. [PMID: 38673106 PMCID: PMC11051311 DOI: 10.3390/ma17081749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
The development of bone-filling biomaterials capable of delivering in situ bone growth promoters or therapeutic agents is a key area of research. We previously developed a biomaterial constituting biphasic calcium phosphate (BCP) microparticles embedded in an autologous blood or plasma clot, which induced bone-like tissue formation in ectopic sites and mature bone formation in orthotopic sites, in small and large animals. More recently, we showed that activated carbon (AC) fiber cloth is a biocompatible material that can be used, due to its multiscale porosity, as therapeutic drug delivery system. The present work aimed first to assess the feasibility of preparing calibrated AC microparticles, and second to investigate the properties of a BCP/AC microparticle combination embedded in a plasma clot. We show here, for the first time, after subcutaneous (SC) implantation in mice, that the addition of AC microparticles to a BCP/plasma clot does not impair bone-like tissue formation and has a beneficial effect on the vascularization of the newly formed tissue. Our results also confirm, in this SC model, the ability of AC in particle form to adsorb and deliver large molecules at an implantation site. Altogether, these results demonstrate the feasibility of using this BCP/AC/plasma clot composite for bone reconstruction and drug delivery.
Collapse
Affiliation(s)
- Samah Rekima
- INSERM, CNRS, iBV, Université Côte d’Azur, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Nadine Gautier
- INSERM, CNRS, iBV, Université Côte d’Azur, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Sylvie Bonnamy
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| | - Nathalie Rochet
- INSERM, CNRS, iBV, Université Côte d’Azur, 06107 Nice, France; (S.R.); (N.G.); (N.R.)
| | - Florian Olivier
- CNRS, Université d’Orléans, ICMN UMR 7374, 45071 Orléans, France;
| |
Collapse
|
8
|
Kim KJ, Ha J, Kim SW, Kim JE, Lee S, Choi HS, Hong N, Kong SH, Ahn SH, Park SY, Baek KH. Bone Loss after Solid Organ Transplantation: A Review of Organ-Specific Considerations. Endocrinol Metab (Seoul) 2024; 39:267-282. [PMID: 38693817 PMCID: PMC11066446 DOI: 10.3803/enm.2024.1939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/03/2024] Open
Abstract
This review article investigates solid organ transplantation-induced osteoporosis, a critical yet often overlooked issue, emphasizing its significance in post-transplant care. The initial sections provide a comprehensive understanding of the prevalence and multifactorial pathogenesis of transplantation osteoporosis, including factors such as deteriorating post-transplantation health, hormonal changes, and the impact of immunosuppressive medications. Furthermore, the review is dedicated to organ-specific considerations in transplantation osteoporosis, with separate analyses for kidney, liver, heart, and lung transplantations. Each section elucidates the unique challenges and management strategies pertinent to transplantation osteoporosis in relation to each organ type, highlighting the necessity of an organ-specific approach to fully understand the diverse manifestations and implications of transplantation osteoporosis. This review underscores the importance of this topic in transplant medicine, aiming to enhance awareness and knowledge among clinicians and researchers. By comprehensively examining transplantation osteoporosis, this study contributes to the development of improved management and care strategies, ultimately leading to improved patient outcomes in this vulnerable group. This detailed review serves as an essential resource for those involved in the complex multidisciplinary care of transplant recipients.
Collapse
Affiliation(s)
- Kyoung Jin Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sihoon Lee
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Han Seok Choi
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Namki Hong
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Hye Kong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Hee Ahn
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - So Young Park
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Ki-Hyun Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - on Behalf of Metabolic Bone Disease Study Group of Korean Endocrine Society
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Korea
- Department of Internal Medicine, Gachon University College of Medicine, Incheon, Korea
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
- Department of Internal Medicine, Endocrine Research Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Endocrinology and Metabolism, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
- Department of Endocrinology and Metabolism, College of Medicine, Kyung Hee University, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
9
|
Harrer JA, Fulton TM, Sangadala S, Kaiser J, Devereaux EJ, Oliver C, Presciutti SM, Boden SD, Willett NJ. Local FK506 delivery induces osteogenesis in in vivo rat bone defect and rabbit spine fusion models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584163. [PMID: 38559240 PMCID: PMC10979893 DOI: 10.1101/2024.03.08.584163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bone grafting procedures are commonly used for the repair, regeneration, and fusion of bones in in a wide range of orthopaedic surgeries, including large bone defects and spine fusion procedures. Autografts are the clinical gold standard, though recombinant human bone morphogenetic proteins (rhBMPs) are often used, particularly in difficult clinical situations. However, treatment with rhBMPs can have off-target effects and significantly increase surgical costs, adding to patients' already high economic and mental burden. Recent studies have identified that FDA-approved immunosuppressant drug, FK506 (Tacrolimus), can also activate the BMP pathway by binding to its inhibitors. This study tested the hypothesis that FK506, as a standalone treatment, could induce osteogenic differentiation of human mesenchymal stromal cells (hMSCs), as well as functional bone formation in a rat segmental bone defect model and rabbit spinal fusion model. FK506 potentiated the effect of low dose BMP-2 to enhance osteogenic differentiation and mineralization of hMSCs in vitro. Standalone treatment with FK506 delivered on a collagen sponge, produced consistent bone bridging of a rat critically-sized femoral defect with functional mechanical properties comparable to naïve bone. In a rabbit single level posterolateral spine fusion model, treatment with FK506 delivered on a collagen sponge successfully fused the L5-L6 vertebrae at rates comparable to rhBMP-2 treatment. These data demonstrate the ability of FK506 to induce bone formation in human cells and two challenging in vivo models, and indicate FK506 can be utilized either as a standalone treatment or in conjunction with rhBMP to treat a variety of spine disorders.
Collapse
Affiliation(s)
- Julia Andraca Harrer
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| | - Travis M. Fulton
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sreedhara Sangadala
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jarred Kaiser
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Emily J. Devereaux
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Steven M. Presciutti
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Scott D. Boden
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nick J. Willett
- Atlanta VA Medical Center, Decatur, GA 30033, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
10
|
Yu YL, Huang QF, An DW, Raad J, Martens DS, Latosinska A, Stolarz-Skrzypek K, Van Cleemput J, Feng YQ, Mischak H, Allegaert K, Verhamme P, Janssens S, Nawrot TS, Staessen JA. OSTEO18, a novel urinary proteomic signature, associated with osteoporosis in heart transplant recipients. Heliyon 2024; 10:e24867. [PMID: 38312576 PMCID: PMC10835361 DOI: 10.1016/j.heliyon.2024.e24867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Background Immunosuppressive treatment in heart transplant (HTx) recipient causes osteoporosis. The urinary proteomic profile (UPP) includes peptide fragments derived from the bone extracellular matrix. Study aims were to develop and validate a multidimensional UPP biomarker for osteoporosis in HTx patients from single sequenced urinary peptides identifying the parent proteins. Methods A single-center HTx cohort was analyzed. Urine samples were measured by capillary electrophoresis coupled with mass spectrometry. Cases with osteoporosis and matching controls were randomly selected from all available 389 patients. In derivation case-control dataset, 1576 sequenced peptides detectable in ≥30 % of patients. Applying statistical analysis on these, an 18-peptide multidimensional osteoporosis UPP biomarker (OSTEO18) was generated by support vector modeling. The 2 replication datasets included 118 and 94 patients. For further validation, the whole cohort was analyzed. Statistical methods included logistic regression and receiver operating characteristic curve (ROC) analysis. Results In derivation dataset, the AUC, sensitivity and specificity of OSTEO18 were 0.83 (95 % CI: 0.76-0.90), 74.3 % and 87.1 %, respectively. In replication datasets, results were confirmatory. In the whole cohort (154 osteoporotic patients [39.6 %]), the ORs for osteoporosis increased (p < 0.0001) across OSTEO18 quartiles from 0.39 (95 % CI: 0.25-0.61) to 3.14 (2.08-4.75). With full adjustment for known osteoporosis risk factors, OSTEO18 improved AUC from 0.708 to 0.786 (p = 0.0003) for OSTEO18 categorized (optimized threshold: 0.095) and to 0.784 (p = 0.0004) for OSTEO18 as continuously distributed classifier. Conclusion OSTEO18 is a clinically meaningful novel biomarker indicative of osteoporosis in HTx recipients and is being certified as in-vitro diagnostic.
Collapse
Affiliation(s)
- Yu-Ling Yu
- The Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
| | - Qi-Fang Huang
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - De-Wei An
- The Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Julia Raad
- Mosaiques Diagnostics GmbH, Hannover, Germany
| | - Dries S. Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - Katarzyna Stolarz-Skrzypek
- First Department of Cardiology, Interventional Electrocardiology and Hypertension, Jagiellonian University, Kraków, Poland
| | | | - Ying-Qing Feng
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Karel Allegaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Hospital Pharmacy, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Stefan Janssens
- Division of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | - Tim S. Nawrot
- The Research Unit Environment and Health, KU Leuven Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Jan A. Staessen
- Non-Profit Research Association Alliance for the Promotion of Preventive Medicine, Mechelen, Belgium
- The Biomedical Sciences Group, Faculty of Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Pinto B, Muzumdar R, Hecht Baldauff N. Bone health in children undergoing solid organ transplantation. Curr Opin Pediatr 2023; 35:703-709. [PMID: 37811914 DOI: 10.1097/mop.0000000000001290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Pediatric solid organ transplant recipients are a unique and growing patient population who are at risk for metabolic bone disease both before and after transplantation. RECENT FINDINGS The odds of sustaining a fracture in adulthood are significantly higher if an individual has sustained at least one childhood fracture, therefore, close monitoring before and after transplant is essential. Emerging data in patients with chronic kidney disease mineral and bone disorder (CKD-MBD) and hepatic osteodystrophy highlights the role of fibroblast growth factor 23 in the pathogenesis of metabolic bone disease in these conditions. While dual X-ray absorptiometry (DXA) is the most widely used imaging modality for assessment of bone mass in children, quantitative computer tomography (QCT) is an emerging modality, especially for patients with glucocorticoid-induced osteoporosis. SUMMARY Solid organ transplantation improves organ function and quality of life; however, bone mineral density can decline following transplantation, particularly during the first three to six months. Immunosuppressive medications, including glucocorticoids, are a major contributing factor. Following transplant, treatment should be tailored to achieve mineral homeostasis, correct nutritional deficiencies, and improve physical conditioning. In summary, early identification and treatment of metabolic bone disease can improve the bone health status of pediatric transplant recipients as they enter adulthood. VIDEO ABSTRACT http://links.lww.com/MOP/A71.
Collapse
Affiliation(s)
- Bianca Pinto
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
12
|
Kumar SE, Cherian KE, Paul TV, Goel A. Caring for the Bone Health Among Liver Transplant Recipients. J Clin Exp Hepatol 2023; 13:1130-1139. [PMID: 37975037 PMCID: PMC10643275 DOI: 10.1016/j.jceh.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/04/2023] [Indexed: 11/19/2023] Open
Abstract
Liver transplant outcomes have improved over the years, and currently, the quality of life and long-term well-being of these patients needs to be improved. Improving bone health goes a long way toward achieving this objective. Poor bone health (osteopenia and osteoporosis) although prevalent, is often overlooked owing to its asymptomatic nature. It can be complicated by debilitating fracture affecting quality of life. It is recommended to assess and optimize bone health prior to liver transplant. Multiple factors contribute to poor bone health in a liver transplant recipient and it is vital to understand and ameliorate these. A careful and targeted approach with inputs from multidisciplinary team involving transplant physician, endocrinologist, occupational therapist, nutritionist, and nursing personnel may often be required. In this review, we aim to concisely discuss the various aspects related to prevalence, pathophysiology, evaluation, treatment, and follow-up of bone disease among liver transplant recipients.
Collapse
Affiliation(s)
- Santhosh E. Kumar
- Department of Hepatology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kripa E. Cherian
- Department of Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Thomas V. Paul
- Department of Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Ashish Goel
- Department of Hepatology, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Tsai HL, Lin TC, Lin NC, Yang HH, Chang JW. Risk Factors for Fractures in Renal Transplantation: A Population-Based Cohort Study. Am J Nephrol 2023; 54:498-507. [PMID: 37783206 DOI: 10.1159/000533125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/17/2023] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Kidney transplant recipients are at an increased risk of fractures, and targeted preventive strategies are needed. Therefore, in this retrospective cohort study, we investigated a large population-based cohort to identify the transplant recipient-specific risk factors for fractures in Taiwanese kidney transplant recipients. METHODS We conducted a retrospective cohort study using the National Health Insurance Research Database. Patients who underwent renal transplantation between 2003 and 2015 were identified and followed until December 31, 2015, to observe the development of fractures. Variables associated with the development of post-transplant fractures were identified by calculating hazard ratios in a Cox regression model. RESULTS 5,309 renal transplant recipients were identified, of whom 553 (10.4%) were diagnosed with post-transplant fractures. Independent predictors of post-transplant fractures included an age at transplant ≥65 years (p < 0.001), female sex (p < 0.001), fractures within 3 years prior to transplantation (p < 0.001), and diabetes mellitus (p < 0.001). In addition, daily prednisolone doses >2.9–5.3 mg/day (p < 0.001), >5.3–8.7 mg/day (p < 0.001), and >8.7 mg/day (p < 0.001) were also independent predictors of post-transplant fractures. Conversely, the use of peritoneal dialysis before renal transplantation (p = 0.021), hypertension (p = 0.005), and the use of tacrolimus (p < 0.001), azathioprine (p = 0.006), mycophenolate mofetil/mycophenolic acid (p = 0.002), mTOR inhibitors (p = 0.004), and calcium supplements (p = 0.009) were inversely correlated with post-transplant fractures. CONCLUSION We recommend minimizing daily glucocorticoids as early and as far as possible in conjunction with immunosuppressive regimens such as tacrolimus, azathioprine, mycophenolate mofetil/mycophenolic acid, mTOR inhibitors, and calcium supplements, especially in older female recipients and in recipients with diabetes and a history of prior fractures.
Collapse
Affiliation(s)
- Hsin-Lin Tsai
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Ching Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Niang-Cheng Lin
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Transplantation Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hui-Hsin Yang
- Division of Pediatric Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jei-Wen Chang
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
14
|
Forien M, Coralli R, Verdonk C, Ottaviani S, Ebstein E, Demaria L, Palazzo E, Dorent R, Dieudé P. Osteoporosis and risk of fracture in heart transplant patients. Front Endocrinol (Lausanne) 2023; 14:1252966. [PMID: 37766687 PMCID: PMC10520492 DOI: 10.3389/fendo.2023.1252966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Significant bone loss occurs after heart transplantation, predominantly in the first year, with increased risk of incident fractures. The goal of this study was to evaluate the prevalence of fragility fractures in a population of heart transplantation patients and to identify the independent risk factors for fractures. Methods This was a prospective monocentric study that included patients with heart transplantation occurring < 10 years who were undergoing heart transplantation monitoring. All patients underwent bone mineral density evaluation by dual-energy X-ray absorptiometry and radiographies to establish the presence of vertebral fractures. Results We included 79 patients (61 men); the mean age was 56.8 ± 10.8 years. The mean time between transplantation and inclusion was 32.3 ± 35.0 months. Incident fractures were diagnosed in 21 (27%) patients after heart transplantation. Vertebral fractures were the most frequent (30 vertebral fractures for 15 patients). Osteoporosis was confirmed in 22 (28%) patients. Mean bone mineral density at the femoral neck and total hip was lower with than without fracture (femoral neck: 0.777 ± 0.125 vs 0.892 ± 0.174 g/cm2, p<0.01; total hip: 0.892 ± 0.165 vs 0.748 ± 0.07 g/cm2, p<0.001), with a significant result on multivariate analysis. The mean time from transplantation to the first fracture was 8.0 ± 7.6 months. Discussion Our study confirmed a high vertebral fracture risk in heart transplant patients, especially during the first year after transplantation.
Collapse
Affiliation(s)
- Marine Forien
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| | - Romain Coralli
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| | - Constance Verdonk
- Cardiac Surgery and Transplantation Department, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1148, Bichat Hospital (APHP), Paris, France
| | - Sébastien Ottaviani
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| | - Esther Ebstein
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| | - Lucie Demaria
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| | - Elisabeth Palazzo
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| | - Richard Dorent
- Cardiac Surgery and Transplantation Department, Institut National de la Santé Et de la Recherche Médicale (INSERM) U1148, Bichat Hospital (APHP), Paris, France
| | - Philippe Dieudé
- Rheumatology Department, Départements Médico-Universitaires (DMU) Locomotion, Bichat Hospital Assistance Publiques des Hopitaux de Paris (APHP), Paris, France
| |
Collapse
|
15
|
Elalouf A. Infections after organ transplantation and immune response. Transpl Immunol 2023; 77:101798. [PMID: 36731780 DOI: 10.1016/j.trim.2023.101798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/08/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Organ transplantation has provided another chance of survival for end-stage organ failure patients. Yet, transplant rejection is still a main challenging factor. Immunosuppressive drugs have been used to avoid rejection and suppress the immune response against allografts. Thus, immunosuppressants increase the risk of infection in immunocompromised organ transplant recipients. The infection risk reflects the relationship between the nature and severity of immunosuppression and infectious diseases. Furthermore, immunosuppressants show an immunological impact on the genetics of innate and adaptive immune responses. This effect usually reactivates the post-transplant infection in the donor and recipient tissues since T-cell activation has a substantial role in allograft rejection. Meanwhile, different infections have been found to activate the T-cells into CD4+ helper T-cell subset and CD8+ cytotoxic T-lymphocyte that affect the infection and the allograft. Therefore, the best management and preventive strategies of immunosuppression, antimicrobial prophylaxis, and intensive medical care are required for successful organ transplantation. This review addresses the activation of immune responses against different infections in immunocompromised individuals after organ transplantation.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| |
Collapse
|
16
|
Atagu N, Mihilli S, Nguyen HT, Wu A, Famure O, Li Y, Kim SJ. Risk Factors for First and Recurrent Fractures among Kidney Transplant Recipients. Prog Transplant 2023; 33:16-24. [PMID: 36514897 PMCID: PMC9975818 DOI: 10.1177/15269248221145034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Kidney transplantation is associated with increased risk of bone fracture. Current literature reports widely variable fracture burden and contains limited data on risk factors for recurrent fractures. Methods: The incidence of all and major osteoporotic fractures (hip, forearm, thoracolumbar, and proximal humerus) were assessed. The risk factors for first and recurrent fractures among 1285 Canadian kidney transplant recipients transplanted between January 1, 2004, and December 31, 2013 were also identified. Results: The 10-year cumulative incidence of all fractures and major osteoporotic fractures in this population was 27.1% (95% CI: 22.5, 32.4) and 17.8% (95% CI: 13.4, 23.5), respectively. On multivariable analysis, female sex (HR = 1.64 [95% CI: 1.20, 2.26]), history of fracture (HR = 1.54 [95% CI: 1.12, 2.11]), and pretransplant diabetes (HR = 1.85 [95% CI: 1.29, 2.65]) were recipient factors found to increase the risk for any first fracture posttransplant. These risk factors persist in analysis with the time origin 3-months posttransplant, where transplant age (HR = 1.01 [95% CI: 1.00, 1.03]) and increased time on pretransplant dialysis (HR = 1.06 [95% CI: 1.00, 1.12]) also emerge as risk factors for first fracture. On multivariable shared frailty model analysis, increased risk of recurrent fractures was associated with recipient female sex (HR = 1.74 [95% CI: 1.21, 2.51]) and history of diabetes (HR = 1.76 [95% CI: 1.17, 2.66]). Discussion: The results suggested that some risk factors for first fracture may not inform risk of recurrent fractures. As such, fracture risk should be assessed accordingly to optimize long-term care and implement preventive measures.
Collapse
Affiliation(s)
- Norman Atagu
- Russell H. Morgan Department of Radiology and Radiological Science, 1500Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stefani Mihilli
- Ajmera Transplant Centre, Toronto General Hospital, 7989University Health Network, Toronto, Ontario, Canada
| | - Huong Thao Nguyen
- Ajmera Transplant Centre, Toronto General Hospital, 7989University Health Network, Toronto, Ontario, Canada
| | - Alicia Wu
- Ajmera Transplant Centre, Toronto General Hospital, 7989University Health Network, Toronto, Ontario, Canada
| | - Olusegun Famure
- Ajmera Transplant Centre, Toronto General Hospital, 7989University Health Network, Toronto, Ontario, Canada
| | - Yanhong Li
- Ajmera Transplant Centre, Toronto General Hospital, 7989University Health Network, Toronto, Ontario, Canada.,Department of Medicine (Nephrology), 12366University of Toronto, Medical, Toronto, Ontario, Canada
| | - S Joseph Kim
- Ajmera Transplant Centre, Toronto General Hospital, 7989University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Miglietta F, Iamartino L, Palmini G, Giusti F, Marini F, Iantomasi T, Brandi ML. Endocrine sequelae of hematopoietic stem cell transplantation: Effects on mineral homeostasis and bone metabolism. Front Endocrinol (Lausanne) 2023; 13:1085315. [PMID: 36714597 PMCID: PMC9877332 DOI: 10.3389/fendo.2022.1085315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an established therapeutic strategy for the treatment of malignant (leukemia and lymphoma) and non-malignant (thalassemia, anemia, and immunodeficiency) hematopoietic diseases. Thanks to the improvement in patient care and the development of more tolerable conditioning treatments, which has extended the applicability of therapy to the elderly, a growing number of patients have successfully benefited from HSCT therapy and, more importantly, HSCT transplant-related mortality has consistently reduced in recent years. However, concomitantly to long term patient survival, a growing incidence of late HSCT-related sequelae has been reported, being variably associated with negative effects on quality of life of patients and having a non-negligible impact on healthcare systems. The most predominantly observed HSCT-caused complications are chronic alterations of the endocrine system and metabolism, which endanger post-operative quality of life and increase morbidity and mortality of transplanted patients. Here, we specifically review the current knowledge on HSCT-derived side-effects on the perturbation of mineral metabolism; in particular, the homeostasis of calcium, focusing on current reports regarding osteoporosis and recurrent renal dysfunctions that have been observed in a percentage of HSC-transplanted patients. Possible secondary implications of conditioning treatments for HSCT on the physiology of the parathyroid glands and calcium homeostasis, alone or in association with HSCT-caused renal and bone defects, are critically discussed as well.
Collapse
Affiliation(s)
- Francesca Miglietta
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Luca Iamartino
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Gaia Palmini
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Giusti
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Francesca Marini
- Fondazione FIRMO Onlus (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental Clinical and Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Maria Luisa Brandi
- Fondazione FIRMO Onlus (Italian Foundation for the Research on Bone Diseases), Florence, Italy
| |
Collapse
|
18
|
Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 2022; 44:417-473. [PMID: 36510335 PMCID: PMC10166271 DOI: 10.1210/endrev/bnac031] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide; and commonly used resorption markers serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen and tartrate resistant acid phosphatase type 5b. BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable components (e.g., age, gender, ethnicity) and controllable components, particularly relating to collection conditions (e.g., fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics; and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic kidney disease-mineral bone disorder.
Collapse
Affiliation(s)
- Marian Schini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Syazrah Salam
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
19
|
Ziolkowski S, Liu S, Montez-Rath ME, Denburg M, Winkelmayer WC, Chertow GM, O'Shaughnessy MM. Association between cause of kidney failure and fracture incidence in a national US dialysis population cohort study. Clin Kidney J 2022; 15:2245-2257. [PMID: 36381373 PMCID: PMC9664571 DOI: 10.1093/ckj/sfac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Background Whether fracture rates, overall and by fracture site, vary by cause of kidney failure in patients receiving dialysis is unknown. Methods Using the US Renal Data System, we compared fracture rates across seven causes of kidney failure in patients who started dialysis between 1997 and 2014. We computed unadjusted and multivariable adjusted proportional sub-distribution hazard models, with fracture events (overall, and by site) as the outcome and immunoglobulin A nephropathy as the reference group. Kidney transplantation and death were competing events. Results Among 491 496 individuals, with a median follow-up of 2.0 (25%, 75% range 0.9–3.9) years, 62 954 (12.8%) experienced at least one fracture. Patients with diabetic nephropathy, vasculitis or autosomal polycystic kidney disease (ADPKD) had the highest (50, 46 and 40 per 1000 person-years, respectively), and patient with lupus nephritis had the lowest (20 per 1000 person-years) fracture rates. After multivariable adjustment, diabetic nephropathy [hazard ratio (HR) 1.43, 95% confidence interval 1.33–1.53], ADPKD (HR 1.37, 1.26–1.48), vasculitis (HR 1.22, 1.09–1.34), membranous nephropathy (HR 1.16, 1.02–1.30) and focal segmental glomerulosclerosis (FSGS) (HR 1.13, 1.02–1.24) were associated with a significantly higher, and lupus nephritis with a significantly lower (HR 0.85, 0.71–0.98) fracture hazard. The hazards for upper extremity and lower leg fractures were significantly higher in diabetic nephropathy, ADPKD, FSGS and membranous nephropathy, while the hazard for vertebral fracture was significantly higher in vasculitis. Our findings were limited by the lack of data on medication use and whether fractures were traumatic or non-traumatic, among other factors. Conclusions Fracture risk, overall and by fracture site, varies by cause of end-stage kidney disease. Future work to determine underlying pathogenic mechanisms contributing to differential risks might inform more tailored treatment strategies. Our study was limited by lack of data regarding numerous potential confounders or mediators including medications and measures or bone biomarkers.
Collapse
Affiliation(s)
- Susan Ziolkowski
- Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Sai Liu
- Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Maria E Montez-Rath
- Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | - Michelle Denburg
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Division of Nephrology, Children's Hospital of Philadelphia , Philadelphia, PA , USA
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Baylor College of Medicine , Houston, TX , USA
| | - Glenn M Chertow
- Department of Medicine, Stanford University School of Medicine , Stanford, CA , USA
| | | |
Collapse
|
20
|
Rachner TD, Link-Rachner CS, Bornhäuser M, Hofbauer LC. Skeletal health in patients following allogeneic hematopoietic cell transplantation. Bone 2022; 158:115684. [PMID: 33049368 DOI: 10.1016/j.bone.2020.115684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a potentially curative approach for patients with certain hematological diseases, including several forms of lymphoma and leukemia. Besides several treatment-associated risks, transplanted patients are at an increased risk of developing osteoporosis. The underlying pathophysiology is complex and includes factors influenced directly by the disease as well as applied therapies like irradiation, chemotherapy and adjuvant immunosuppressive agents. In addition, patients are prone to secondary hypogonadism, and many patients will require long-term glucocorticoid therapy to mitigate graft-versus-host reactions. All these factors contribute to bone loss, but the individual risk profile may vary greatly. This review summarizes our knowledge on bone loss following allogenic HCT and provides screening and treatment recommendations.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Cornelia S Link-Rachner
- Division of Hematology and Oncology, Department of Medicine I, Technische Universität Dresden, Dresden, Germany
| | - Martin Bornhäuser
- German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Hematology and Oncology, Department of Medicine I, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (www.nct-dresden.de), Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
21
|
The Effects of CNI and Mtori-Based Regimens on Bone Mineral Density After Renal Transplantation. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2022; 43:101-107. [PMID: 35451298 DOI: 10.2478/prilozi-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Since glucocorticoids are used in low maintenance doses today, the relationship between calcineurin inhibitors (CNI) and osteoporosis has become clinically significant in osteoporosis after solid organ transplantation. However, there is evidence that the mammalian target of rapamycin inhibitors (mTORi) may be beneficial via osteoclast inhibition. Objective: The bone mineral density (BMD) changes are investigated in renal transplant patients under CNI or mTORi-based maintenance regimens during the first five-year post-transplant course. Methods: This study consists of thirty-three renal allograft recipients with less than one year of dialysis history. The exclusion criteria were: being older than 50 years old, history of bisphosphonate use, parathyroidectomy, CNI-mTORi switch after the post-transplant third month, diuretic use, and history of malignancy. First and fifth-year BMD scores and simultaneous laboratory parameters were evaluated. Results: CNI (n=21) and mTORi group (n=12) had similar demographics, dialysis vintages, first and fifth-year serum parathormone, calcium, phosphate, magnesium, alkaline phosphatase, and 25-OH-vitamin D levels. The femur neck scores of the CNI group decreased from -0.82 (±0.96) to -1.52 (±0.92) (p=0.020). We observed a significant decrease in the CNI group compared to the mTORi group [-0.70 (±0.68) and 0.30 (±0.36), respectively; p<0.01] when the BMD score changes were evaluated among years. The mean femur neck score of the mTORi group increased insignificantly from -1.13 (±0.65) to -0.82 (±0.56) at the fifth-year DXA scan (p=0.230). Similar trends were also observed in L1-4 scores. Conclusion: Our study suggests that CNI-based treatment is associated with decreased femur neck BMD scores, and mTORi-based treatment tends to be beneficial in the post-transplant five-year follow-up.
Collapse
|
22
|
Ebeling PR, Nguyen HH, Aleksova J, Vincent AJ, Wong P, Milat F. Secondary Osteoporosis. Endocr Rev 2022; 43:240-313. [PMID: 34476488 DOI: 10.1210/endrev/bnab028] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a global public health problem, with fractures contributing to significant morbidity and mortality. Although postmenopausal osteoporosis is most common, up to 30% of postmenopausal women, > 50% of premenopausal women, and between 50% and 80% of men have secondary osteoporosis. Exclusion of secondary causes is important, as treatment of such patients often commences by treating the underlying condition. These are varied but often neglected, ranging from endocrine to chronic inflammatory and genetic conditions. General screening is recommended for all patients with osteoporosis, with advanced investigations reserved for premenopausal women and men aged < 50 years, for older patients in whom classical risk factors for osteoporosis are absent, and for all patients with the lowest bone mass (Z-score ≤ -2). The response of secondary osteoporosis to conventional anti-osteoporosis therapy may be inadequate if the underlying condition is unrecognized and untreated. Bone densitometry, using dual-energy x-ray absorptiometry, may underestimate fracture risk in some chronic diseases, including glucocorticoid-induced osteoporosis, type 2 diabetes, and obesity, and may overestimate fracture risk in others (eg, Turner syndrome). FRAX and trabecular bone score may provide additional information regarding fracture risk in secondary osteoporosis, but their use is limited to adults aged ≥ 40 years and ≥ 50 years, respectively. In addition, FRAX requires adjustment in some chronic conditions, such as glucocorticoid use, type 2 diabetes, and HIV. In most conditions, evidence for antiresorptive or anabolic therapy is limited to increases in bone mass. Current osteoporosis management guidelines also neglect secondary osteoporosis and these existing evidence gaps are discussed.
Collapse
Affiliation(s)
- Peter R Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia
| | - Hanh H Nguyen
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Department of Endocrinology and Diabetes, Western Health, Victoria 3011, Australia
| | - Jasna Aleksova
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Amanda J Vincent
- Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Monash Centre for Health Research and Implementation, School of Public Health and Preventative Medicine, Monash University, Clayton, Victoria 3168, Australia
| | - Phillip Wong
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Frances Milat
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Victoria 3168, Australia.,Department of Endocrinology, Monash Health, Clayton, Victoria 3168, Australia.,Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| |
Collapse
|
23
|
Jehn U, Kortenhorn A, Schütte-Nütgen K, Thölking G, Westphal F, Strauss M, Wennmann DO, Pavenstädt H, Suwelack B, Görlich D, Reuter S. The Influence of Parathyroidectomy on Osteoporotic Fractures in Kidney Transplant Recipients: Results from a Retrospective Single-Center Trial. J Clin Med 2022; 11:654. [PMID: 35160109 PMCID: PMC8836679 DOI: 10.3390/jcm11030654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Kidney transplant (KTx) recipients are a high-risk population for osteoporotic fractures. We herein aim to identify the role of pre-transplant parathyroidectomy (PTX) and other modifiable factors associated with osteoporotic fractures in KTx recipients. We conducted a retrospective study involving 711 adult patients (4608 patient-years) who were transplanted at our center between January 2007 and June 2015. Clinical data were extracted from patients' electronic medical records. Different laboratory and clinical parameters for mineral bone disease (MBD) and osteoporosis, including medication, were evaluated. We chose fracture events unrelated to malignancies or adequate trauma as the primary endpoint. Osteoporotic fractures occurred in 47 (6.6%) patients (median 36.7 months, IQR 45.9) after KTx (fracture incidence of 10 per 1000 person-years). Prior to KTx, subtotal PTX was performed in 116 patients (16.3%, median time 4.2 years before KTx, IQR 5.0). Of the patients with fracture (n = 47), only one (2.2%) patient had previously undergone PTX. After adjusting for the known fracture risk factors MBD and osteoporosis, PTX remained a protective factor against fractures (HR 0.134, CI 0.018-0.991, p = 0.049). We observed a reduced risk for pathological fractures in KTx patients who underwent PTX, independent from elevated parathyroid hormone at the time of KTx or afterwards.
Collapse
Affiliation(s)
- Ulrich Jehn
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Anja Kortenhorn
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Katharina Schütte-Nütgen
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Gerold Thölking
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Florian Westphal
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Markus Strauss
- Department of Medicine C, Division of Cardiology and Angiology, University Hospital of Muenster, 48149 Muenster, Germany;
| | - Dirk-Oliver Wennmann
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Barbara Suwelack
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| | - Dennis Görlich
- Institute of Biostatistics and Clinical Research, University of Muenster, 48149 Muenster, Germany;
| | - Stefan Reuter
- Department of Medicine D, Division of General Internal Medicine, Nephrology and Rheumatology, University Hospital of Muenster, 48149 Muenster, Germany; (A.K.); (K.S.-N.); (G.T.); (F.W.); (D.-O.W.); (H.P.); (B.S.); (S.R.)
| |
Collapse
|
24
|
Donoho DA, Singer TG, Lazaro T, Bauer DF. Management of Cervical Kyphotic Deformity Associated With Loeys-Dietz Vasculopathy and Cardiac Transplantation: Case Report, Literature Review, and Strategies for Complex Skeletal Dysplasias. Cureus 2021; 13:e20503. [PMID: 35070541 PMCID: PMC8763335 DOI: 10.7759/cureus.20503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Seventy-six percent of pediatric patients with Loeys-Dietz syndrome (LDS), a connective tissue disorder driven by a transforming growth factor-beta (TGF-B) pathway mutation, manifest cervical spine malformations. A prior series showed that 16% required surgical stabilization. Spine surgery in LDS is associated with an 88% complication rate due to poor bone quality and cerebrovascular ectasia. Of 77 patients with LDS, one patient who required spine surgery was identified in an institutional database from 2010 to 2020. A 15-year-old with LDS presented with symptomatic cervical myelopathy from a rapidly progressive and unstable cervical deformity. We performed a C5-6 corpectomy and an O-T2 posterior spinal fusion with recombinant human bone morphogenetic protein-2 (rhBMP-2). We achieved correction of her kyphosis and normalization of her neurologic status. She is neurologically well one year postoperatively with bony fusion. The management of a pediatric patient with LDS, orthotopic heart transplantation (OHT), and craniocervical deformity with instability is a novel challenge. Long-segment constructs are beneficial, rather than sparing the occiput or cervicothoracic junction. Off-label BMP may aid an LDS patient with TGF-B mutation and sternotomy. Surgeons should continue immunomodulatory and antiplatelet medications when required for OHT.
Collapse
|
25
|
Helal HM, Samy WM, Kamoun EA, El-Fakharany EM, Abdelmonsif DA, Aly RG, Mortada SM, Sallam MA. Potential Privilege of Maltodextrin-α-Tocopherol Nano-Micelles in Seizing Tacrolimus Renal Toxicity, Managing Rheumatoid Arthritis and Accelerating Bone Regeneration. Int J Nanomedicine 2021; 16:4781-4803. [PMID: 34290503 PMCID: PMC8286967 DOI: 10.2147/ijn.s317409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Tacrolimus (TAC) is a powerful immunosuppressive agent whose therapeutic applicability is confined owing to its systemic side effects. Objective Herein, we harnessed a natural polymer based bioconjugate composed of maltodextrin and α-tocopherol (MD-α-TOC) to encapsulate TAC as an attempt to overcome its biological limitations while enhancing its therapeutic anti-rheumatic efficacy. Methods The designed TAC loaded maltodextrin-α-tocopherol nano-micelles (TAC@MD-α-TOC) were assessed for their physical properties, safety, toxicological behavior, their ability to combat arthritis and assist bone/cartilage formation. Results In vitro cell viability assay revealed enhanced safety profile of optimized TAC@MD-α-TOC with 1.6- to 2-fold increase in Vero cells viability compared with free TAC. Subacute toxicity study demonstrated a diminished nephro- and hepato-toxicity accompanied with optimized TAC@MD-α-TOC. TAC@MD-α-TOC also showed significantly enhanced anti-arthritic activity compared with free TAC, as reflected by improved clinical scores and decreased IL-6 and TNF-α levels in serum and synovial fluids. Unique bone formation criteria were proved with TAC@MD-α-TOC by elevated serum and synovial fluid levels of osteocalcin and osteopontin mRNA and proteins expression. Chondrogenic differentiation abilities of TAC@MD-α-TOC were proved by increased serum and synovial fluid levels of SOX9 mRNA and protein expression. Conclusion Overall, our designed bioconjugate micelles offered an excellent approach for improved TAC safety profile with enhanced anti-arthritic activity and unique bone formation characteristics.
Collapse
Affiliation(s)
- Hala M Helal
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Wael M Samy
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Elbadawy A Kamoun
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt.,Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), El- Sherouk City, Cairo, 11837, Egypt
| | - Esmail M El-Fakharany
- Proteins Research Dep., Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab City, Alexandria, 21934, Egypt
| | - Doaa A Abdelmonsif
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt.,Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Rania G Aly
- Department of Surgical Pathology, Faculty of Medicine, Alexandria University, Alexandria, 21521, Egypt
| | - Sana M Mortada
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Marwa A Sallam
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
26
|
Jie J, Li W, Wang G, Xu X. FK506 ameliorates osteoporosis caused by osteoblast apoptosis via suppressing the activated CaN/NFAT pathway during oxidative stress. Inflamm Res 2021; 70:789-797. [PMID: 34165588 DOI: 10.1007/s00011-021-01452-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Osteoporosis is affecting the health of postmenopausal women in the world. In case of that, we explored whether FK-506 could ameliorate osteoporosis by inhibiting the activated CaN/NFAT pathway during oxidative stress. METHODS First, the castrated rat model is constructed through the bilateral ovariectomy. Hologic Discovery (S/N 80347) dual-energy X-ray absorptiometry assessed bone mineral density (BMD) implemented at left femur of rats. Next, hematoxylin-eosin (H&E) staining observed and calculated the changes of bone trabecular, mean trabecular plate separation (Tb.Sp), mean trabecular plate thickness (Tb.Th), and bone volume fraction (BV/TV). Then, CCK-8 assay, TUNEL assay, ALP kit and alizarin red staining detected the viability, apoptosis, alkaline phosphatase (ALP) activity, and capacity of mineralization respectively. At last, commercially available kits detected the levels of ROS and SOD in transfected MC3T3-E1 cells and bone tissues, and Western blot analysis detected proteins related to apoptosis and CaN/NFAT pathway. RESULTS FK-506 increased the BMD and changes of bone trabecular in female castrated rats. FK-506 inhibited the oxidative stress and apoptosis by suppressing the activated CaN/NFAT pathway. Low dose of FK-506 improved the viability, ALP activity, and mineralization capacity. What's more, it suppressed the apoptosis of H2O2-induced MC3T3-E1 cells, which was deteriorated by the high dose of FK-506. Briefly, low dose of FK-506 inhibited the oxidative stress by suppressing the activated CaN/NFAT pathway, while high dose of that further inhibited the oxidative stress by suppressing the CaN/NFAT pathway. CONCLUSION FK-506 ameliorates osteoporosis resulted from osteoblastic apoptosis which caused by suppressing the activated CaN/NFAT pathway during oxidative stress.
Collapse
Affiliation(s)
- Jian Jie
- Department of Orthopedics, Pukou Branch Hospital of JiangSu Province Hospital (Nanjing Pukou Central Hospital), 166 Shanghe Street, Jiangpu Street, Pukou District, Nanjing, 211800, Jiangsu, China
| | - Weilin Li
- Department of Orthopedics, Pukou Branch Hospital of JiangSu Province Hospital (Nanjing Pukou Central Hospital), 166 Shanghe Street, Jiangpu Street, Pukou District, Nanjing, 211800, Jiangsu, China
| | - Guihua Wang
- Department of Orthopedics, Pukou Branch Hospital of JiangSu Province Hospital (Nanjing Pukou Central Hospital), 166 Shanghe Street, Jiangpu Street, Pukou District, Nanjing, 211800, Jiangsu, China
| | - Xiaoming Xu
- Department of Orthopedics, Pukou Branch Hospital of JiangSu Province Hospital (Nanjing Pukou Central Hospital), 166 Shanghe Street, Jiangpu Street, Pukou District, Nanjing, 211800, Jiangsu, China.
| |
Collapse
|
27
|
KARADUMAN U, KARADUMAN B, ÇELİK İ, GÜRSEL M. The Effects of Cyclosporine and Tacrolimus on Gingiva and Alveolar Bone of Rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.835833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Khan Z, Agarwal NB, Bhurani D, Khan MA. Risk Factors for Hematopoietic Stem Cell Transplantation-Associated Bone Loss. Transplant Cell Ther 2021; 27:212-221. [PMID: 33045384 DOI: 10.1016/j.bbmt.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 11/28/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT), including bone marrow transplantation, is the treatment of choice for many hematologic diseases, including hematologic malignancies and different types of anemia. The use of HSCT is increasing annually, mainly because advanced research that has been conducted in this area has exponentially expanded the indications for HSCT and significantly improved transplantation techniques and supportive care practices. Collectively, these improvements have led to an increase in the overall survival of HSCT patients. However, as post-HSCT survival is increasing, awareness of the potential late complications of HSCT is also growing. Unpredictable bone loss is one of the major post-HSCT complications that can cause significant morbidity and impair the quality of life of survivors. Although the exact mechanism of post-HSCT bone loss is not yet known, previous studies have suggested that numerous factors, including destructive preparative regimens (eg, high-dose chemotherapy, total body irradiation), treatment-related complications (eg, graft-versus-host disease), endocrine abnormalities (eg, diabetes mellitus, thyroid dysfunction, adrenal insufficiency), lack of physical activity, and the underlying disease itself are responsible for HSCT-associated bone loss. Sufficient data have been collected to suggest that post-HSCT bone loss can be prevented and treated using the same preventive and treatment modalities as used for the general population. Various guidelines have been formulated to help keep a check on HSCT recipients' deteriorating bone health.
Collapse
Affiliation(s)
- Zehva Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi B Agarwal
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Bhurani
- Department of Hemato-Oncology and Bone Marrow Transplantation, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, New Delhi, India
| | - Mohd Ashif Khan
- Centre for Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
29
|
Guo J, Ren R, Sun K, He J, Shao J. PERK signaling pathway in bone metabolism: Friend or foe? Cell Prolif 2021; 54:e13011. [PMID: 33615575 PMCID: PMC8016635 DOI: 10.1111/cpr.13011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/18/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoblasts and osteoclasts participate in the process of bone remodelling to meet the needs of normal growth and development or repair pathological damage. Endoplasmic reticulum stress (ER stress) can break the intracellular homeostasis of osteoclasts and osteoblasts, which is closely related to abnormal bone remodelling. The double‐stranded RNA‐dependent protein kinase (PKR)‐like ER kinase (PERK) is a key transmembrane protein that regulates ER stress, and growing evidence suggests that the PERK pathway plays a crucial role in regulating bone metabolism under both physiological and pathological conditions. Based on the current findings, we summarized the main mechanisms involved in bone metabolism downstream of the PERK pathway, among which elF2α, FOXO1, CaN, Nrf2 and DAG play a role in regulating the differentiation of osteoblasts and osteoclasts. Importantly, strategies by the regulation of PERK pathway exert beneficial effects in preclinical trials of several bone‐related diseases. Given the importance and novelty of PERK pathway, we provide an overview and discuss the roles of PERK pathway in regulating bone metabolism and its impact on bone‐related diseases. We hope that the development of research in this field will bring a bright future for the treatment of bone‐related diseases.
Collapse
Affiliation(s)
- Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng He
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingfan Shao
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
De Martinis M, Ginaldi L, Sirufo MM, Bassino EM, De Pietro F, Pioggia G, Gangemi S. IL-33/Vitamin D Crosstalk in Psoriasis-Associated Osteoporosis. Front Immunol 2021; 11:604055. [PMID: 33488605 PMCID: PMC7819870 DOI: 10.3389/fimmu.2020.604055] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased risk of developing osteoporosis (OP). It has been shown that OP is among the more common pathologies associated with Pso, mainly due to the well-known osteopenizing conditions coexisting in these patients. Pso and OP share common risk factors, such as vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2 axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor differentiation towards macrophage and dendritic cells and inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the expression of anti-osteoclastic genes. However, while the vitamin D protective functions in OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through hormonal influences and immune-mediated effects, as well as cellular and metabolic functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
31
|
Sirufo MM, De Pietro F, Bassino EM, Ginaldi L, De Martinis M. Osteoporosis in Skin Diseases. Int J Mol Sci 2020; 21:E4749. [PMID: 32635380 PMCID: PMC7370296 DOI: 10.3390/ijms21134749] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis (OP) is defined as a generalized skeletal disease characterized by low bone mass and an alteration of the microarchitecture that lead to an increase in bone fragility and, therefore, an increased risk of fractures. It must be considered today as a true public health problem and the most widespread metabolic bone disease that affects more than 200 million people worldwide. Under physiological conditions, there is a balance between bone formation and bone resorption necessary for skeletal homeostasis. In pathological situations, this balance is altered in favor of osteoclast (OC)-mediated bone resorption. During chronic inflammation, the balance between bone formation and bone resorption may be considerably affected, contributing to a net prevalence of osteoclastogenesis. Skin diseases are the fourth cause of human disease in the world, affecting approximately one third of the world's population with a prevalence in elderly men. Inflammation and the various associated cytokine patterns are the basis of both osteoporosis and most skin pathologies. Moreover, dermatological patients also undergo local or systemic treatments with glucocorticoids and immunosuppressants that could increase the risk of osteoporosis. Therefore, particular attention should be paid to bone health in these patients. The purpose of the present review is to take stock of the knowledge in this still quite unexplored field, despite the frequency of such conditions in clinical practice.
Collapse
Affiliation(s)
- Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (F.D.P.); (E.M.B.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|
32
|
Kanda J, Furukawa M, Izumo N, Shimakura T, Yamamoto N, Takahashi HE, Wakabayashi H. Effects of the combined administration of risedronate and menatetrenone on bone loss induced by tacrolimus in rats. Drug Discov Ther 2020; 14:77-83. [PMID: 32378649 DOI: 10.5582/ddt.2020.03012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tacrolimus, a calcineurin inhibitor, affects bone metabolism and increases the risk of fracture due to marked bone loss. Bisphosphonates increase the bone mineral density (BMD) in osteoporosis patients. Menatetrenone has less positive effects on BMD but reduces the risk of fracture by improving bone quality. In this study, we investigated the effectiveness of the combined administration of risedronate and menatetrenone against bone loss induced by tacrolimus. Wistar rats were divided into four groups: [1] control, [2] tacrolimus at 1.5 mg/kg, [3] tacrolimus + risedronate at 1.0 mg/kg, and [4] tacrolimus + risedronate + menatetrenone at 20 mg/kg. After the drugs were administered for 4 weeks, bone histomorphometric analysis was performed and bone strength was evaluated using a three point bending method. BMD was measured using quantitative computed tomography. Tacrolimus significantly reduced the BMD and strength properties of the lower limb bones. These tacrolimusinduced decreases were suppressed by risedronate treatment. The combined administration of risedronate and menatetrenone more significantly improved bone strength properties than risedronate alone. Bone histomorphometric analysis revealed a significant increase in bone resorption with tacrolimus. Risedronate alone significantly suppressed the tacrolimus-induced increase in bone resorption but simultaneously reduced bone formation. On the other hand, the combined administration of risedronate and menatetrenone suppressed the tacrolimus-induced increase in bone resorption, in addition to the significant risedronate-induced decrease in bone formation. This study suggests that the combined administration of risedronate and menatetrenone improves bone strength in tacrolimus-treated rats by preventing and ameliorating the risedronate-induced suppression of bone formation.
Collapse
Affiliation(s)
- Junkichi Kanda
- Department of Clinical Pharmacotherapy, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Megumi Furukawa
- General Health Medical Center Yokohama University of Pharmacy, Yokohama, Japan
| | - Nobuo Izumo
- General Health Medical Center Yokohama University of Pharmacy, Yokohama, Japan
| | | | - Noriaki Yamamoto
- Niigata Bone Science Institute, Niigata, Japan.,Division of Orthopedic Surgery, Niigata Rehabilitation Hospital, Niigata, Japan
| | | | - Hiroyuki Wakabayashi
- Department of Clinical Pharmacotherapy, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
33
|
Anastasilakis AD, Tsourdi E, Makras P, Polyzos SA, Meier C, McCloskey EV, Pepe J, Zillikens MC. Bone disease following solid organ transplantation: A narrative review and recommendations for management from The European Calcified Tissue Society. Bone 2019; 127:401-418. [PMID: 31299385 DOI: 10.1016/j.bone.2019.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Solid organ transplantation is an established therapy for end-stage organ failure. Both pre-transplantation bone disease and immunosuppressive regimens result in rapid bone loss and increased fracture rates. METHODS The European Calcified Tissue Society (ECTS) formed a working group to perform a systematic review of existing literature on the consequences of end-stage kidney, liver, heart, and lung disease on bone health. Moreover, we assessed the characteristics of post-transplant bone disease and the skeletal effects of immunosuppressive agents and aimed to provide recommendations for the prevention and treatment of transplantation-related osteoporosis. RESULTS Characteristics of bone disease may differ depending on the organ that fails, but patients awaiting solid organ transplantation frequently depict a wide spectrum of bone and mineral abnormalities. Common features are a decreased bone mass and impaired bone strength with consequent high fracture risk, all of which are aggravated in the early post-transplantation period. CONCLUSION Both the underlying disease leading to end-stage organ failure and the immunosuppression regimens implemented after successful organ transplantation have detrimental effects on bone mass, quality and strength. Given existing ample data confirming the high frequency of bone disease in patients awaiting solid organ transplantation, we recommend that all transplant candidates should be assessed for osteoporosis and fracture risk and, if indicated, treated before and after transplantation. Since bone loss in the early post-transplantation period occurs in virtually all solid organ recipients and is associated with glucocorticoid administration, the goal should be to use the lowest possible dose and to taper and withdraw glucocorticoids as early as possible.
Collapse
Affiliation(s)
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany; Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Force & VA General Hospital, Athens, Greece
| | - Stergios A Polyzos
- First Department of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christian Meier
- Division of Endocrinology, Diabetology and Metabolism, University Hospital and University of Basel, Switzerland
| | - Eugene V McCloskey
- Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK; Centre for Integrated research in Musculoskeletal Ageing (CIMA), Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| | - Jessica Pepe
- Department of Internal Medicine and Medical Disciplines, "Sapienza" University, Rome, Italy
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|