1
|
Zlotnick HM, Stevens MM, Mauck RL. Physical-property-based patterning: simply engineering complex tissues. Trends Biotechnol 2024; 42:1230-1240. [PMID: 38664141 PMCID: PMC11449661 DOI: 10.1016/j.tibtech.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 08/09/2024]
Abstract
The field of biofabrication is rapidly expanding with the advent of new technologies and material systems to engineer complex tissues. In this opinion article, we introduce an emerging tissue patterning method, physical-property-based patterning, that has strong translational potential given its simplicity and limited dependence on external hardware. Physical-property-based patterning relies solely on the intrinsic density, magnetic susceptibility, or compressibility of an object, its surrounding solution, and the noncontact application of a remote field. We discuss how physical properties can be exploited to pattern objects and design a variety of biologic tissues. Finally, we pose several open questions that, if addressed, could transform the status quo of biofabrication, pushing us one step closer to patterning tissues in situ.
Collapse
Affiliation(s)
- Hannah M Zlotnick
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, UK; Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, UK
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Translational Musculoskeletal Research Center, CMC VA Medical Center, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Kimball JS, Ferkel RD, Ferkel EI. Regeneration: Bone-Marrow Stimulation of the Talus-Limits and Goals. Foot Ankle Clin 2024; 29:281-290. [PMID: 38679439 DOI: 10.1016/j.fcl.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Bone Marrow Stimulation of osteochondral lesions of the talus has been shown to be a successful way to treat cartilage injuries. Newer data suggest that Bone Marrow Stimulation is best reserved for osteochondral lesions of the talus Sizes Less Than 107.4 mm2 in area. Additionally, newer smaller and deeper techniques to perform bone marrow stimulation have resulted in less subchondral bone damage, less cancellous compaction, and superior bone marrow access with multiple trabecular access channels. Biologic adjuvants such as platelet-rich plasma (PRP), hyaluronic acid (HA), and bone marrow aspirate concentrate (BMAC) may lead to better functional outcomes when used concomitant to bone marrow stimulation.
Collapse
Affiliation(s)
- Jeff S Kimball
- Department of Orthopaedic Surgery, Southern California Orthopedic Institute, Van Nuys, CA, USA
| | - Richard D Ferkel
- Department of Orthopaedic Surgery, Southern California Orthopedic Institute, Van Nuys, CA, USA
| | - Eric I Ferkel
- Department of Orthopaedic Surgery, Southern California Orthopedic Institute, Van Nuys, CA, USA.
| |
Collapse
|
3
|
Hasson M, Fernandes LM, Solomon H, Pepper T, Huffman NL, Pucha SA, Bariteau JT, Kaiser JM, Patel JM. Considering the Cellular Landscape in Marrow Stimulation Techniques for Cartilage Repair. Cells Tissues Organs 2024; 213:523-537. [PMID: 38599194 PMCID: PMC11633897 DOI: 10.1159/000538530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Marrow stimulation is a common reparative approach to treat injuries to cartilage and other soft tissues (e.g., rotator cuff). It involves the recruitment of bone marrow elements and mesenchymal stem cells (MSCs) into the defect, theoretically initiating a regenerative process. However, the resulting repair tissue is often weak and susceptible to deterioration with time. The populations of cells at the marrow stimulation site (beyond MSCs), and their contribution to inflammation, vascularity, and fibrosis, may play a role in quality of the repair tissue. SUMMARY In this review, we accomplish three goals: (1) systematically review clinical trials on the augmentation of marrow stimulation and evaluate their assumptions on the biological elements recruited; (2) detail the cellular populations in bone marrow and their impact on healing; and (3) highlight emerging technologies and approaches that could better guide these specific cell populations towards enhanced cartilage or soft tissue formation. KEY MESSAGES We found that most clinical trials do not account for cell heterogeneity, nor do they specify the regenerative element recruited, and those that do typically utilize descriptions such as "clots," "elements," and "blood." Furthermore, our review of bone marrow cell populations demonstrates a dramatically heterogenous cell population, including hematopoietic cells, immune cells, fibroblasts, macrophages, and only a small population of MSCs. Finally, the field has developed numerous innovative techniques to enhance the chondrogenic potential (and reduce the anti-regenerative impacts) of these various cell types. We hope this review will guide approaches that account for cellular heterogeneity and improve marrow stimulation techniques to treat chondral defects.
Collapse
Affiliation(s)
- Maddie Hasson
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Lorenzo M. Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Hanna Solomon
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Tristan Pepper
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nicholas L. Huffman
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Saitheja A. Pucha
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jason T. Bariteau
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jarred M. Kaiser
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| | - Jay M. Patel
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Department of Veterans Affairs, Decatur, GA, USA
| |
Collapse
|
4
|
Sun J, Han L, Liu C, Ma J, Li X, Sun S, Wang Z. Effect of autologous lyophilized platelet‑rich fibrin on the reconstruction of osteochondral defects in rabbits. Exp Ther Med 2023; 26:569. [PMID: 37954116 PMCID: PMC10632968 DOI: 10.3892/etm.2023.12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/26/2023] [Indexed: 11/14/2023] Open
Abstract
Osteochondral defects caused by degenerative diseases of joints, traumas and inflammation are important issues in clinical practice. Different types of autologous platelet concentrate (PCs) are used in bone and cartilage regeneration. The present study aimed to investigate the effect of lyophilized platelet-rich fibrin (L-PRF) on the repair of osteochondral defects in rabbits. L-PRF was first prepared from fresh PRF (F-PRF) through freeze-drying, and histological and microstructural observations were performed to compare the characteristics of L-PRF and F-PRF. Thereafter, these bioactive scaffolds were implanted into osteochondral defects surgically created in rabbits to assess their effects on tissue repair using micro-CT scanning, histological observations and the evaluation scoring method for cartilage repair established by the International Cartilage Repair Society (ICRS). L-PRF had a histological structure similar to F-PRF. At 16 weeks after implantation surgery, full-thickness osteochondral defects with a diameter of 5 mm and a depth of 4 mm were well-filled with newly regenerated tissues, exhibiting the simultaneous regeneration of avascular articular cartilage and well-vascularized subchondral bone, as proven through macroscopic and microscopic observations in PRF-treated groups compared with that in the untreated group. The application of L-PRF and F-PRF for osteochondral defects in rabbits contributed to massive host remodeling and reconstruction of osteochondral tissues, thus offering a prospective bioactive scaffold for the simultaneous reconstruction of articular cartilage and subchondral bone tissue.
Collapse
Affiliation(s)
- Jianwei Sun
- The Fourth Recuperate Area, Guangzhou Special Service Recuperation Center of People's Liberation Army (PLA) of China Rocket Force, Guangzhou, Guangdong 510515, P.R. China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Chundong Liu
- Department of Stomatology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Junli Ma
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Shuohui Sun
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Zhifa Wang
- Department of Stomatology, General Hospital of Southern Theater Command of PLA, Guangzhou, Guangdong 510010, P.R. China
| |
Collapse
|
5
|
Galarraga JH, Zlotnick HM, Locke RC, Gupta S, Fogarty NL, Masada KM, Stoeckl BD, Laforest L, Castilho M, Malda J, Levato R, Carey JL, Mauck RL, Burdick JA. Evaluation of surgical fixation methods for the implantation of melt electrowriting-reinforced hyaluronic acid hydrogel composites in porcine cartilage defects. Int J Bioprint 2023; 9:775. [PMID: 37457945 PMCID: PMC10339416 DOI: 10.18063/ijb.775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/11/2023] [Indexed: 07/18/2023] Open
Abstract
The surgical repair of articular cartilage remains an ongoing challenge in orthopedics. Tissue engineering is a promising approach to treat cartilage defects; however, scaffolds must (i) possess the requisite material properties to support neocartilage formation, (ii) exhibit sufficient mechanical integrity for handling during implantation, and (iii) be reliably fixed within cartilage defects during surgery. In this study, we demonstrate the reinforcement of soft norbornene-modified hyaluronic acid (NorHA) hydrogels via the melt electrowriting (MEW) of polycaprolactone to fabricate composite scaffolds that support encapsulated porcine mesenchymal stromal cell (pMSC, three donors) chondrogenesis and cartilage formation and exhibit mechanical properties suitable for handling during implantation. Thereafter, acellular MEW-NorHA composites or MEW-NorHA composites with encapsulated pMSCs and precultured for 28 days were implanted in full-thickness cartilage defects in porcine knees using either bioresorbable pins or fibrin glue to assess surgical fixation methods. Fixation of composites with either biodegradable pins or fibrin glue ensured implant retention in most cases (80%); however, defects treated with pinned composites exhibited more subchondral bone remodeling and inferior cartilage repair, as evidenced by micro-computed tomography (micro-CT) and safranin O/fast green staining, respectively, when compared to defects treated with glued composites. Interestingly, no differences in repair tissue were observed between acellular and cellularized implants. Additional work is required to assess the full potential of these scaffolds for cartilage repair. However, these results suggest that future approaches for cartilage repair with MEW-reinforced hydrogels should be carefully evaluated with regard to their fixation approach for construct retention and surrounding cartilage tissue damage.
Collapse
Affiliation(s)
- Jonathan H. Galarraga
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah M. Zlotnick
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan C. Locke
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Sachin Gupta
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie L. Fogarty
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Kendall M. Masada
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan D. Stoeckl
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorielle Laforest
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Castilho
- Department of Orthopaedics, University Medical Center—Utrecht, Utrecht, The Netherlands
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
| | - Jos Malda
- Department of Orthopaedics, University Medical Center—Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center—Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - James L. Carey
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| |
Collapse
|
6
|
Browe DC, Burdis R, Díaz-Payno PJ, Freeman FE, Nulty JM, Buckley CT, Brama PA, Kelly DJ. Promoting endogenous articular cartilage regeneration using extracellular matrix scaffolds. Mater Today Bio 2022; 16:100343. [PMID: 35865410 PMCID: PMC9294195 DOI: 10.1016/j.mtbio.2022.100343] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defects fail to heal spontaneously, typically progressing to osteoarthritis. Bone marrow stimulation techniques such as microfracture (MFX) are the current surgical standard of care; however MFX typically produces an inferior fibro-cartilaginous tissue which provides only temporary symptomatic relief. Here we implanted solubilised articular cartilage extracellular matrix (ECM) derived scaffolds into critically sized chondral defects in goats, securely anchoring these implants to the joint surface using a 3D-printed fixation device that overcame the need for sutures or glues. In vitro these ECM scaffolds were found to be inherently chondro-inductive, while in vivo they promoted superior articular cartilage regeneration compared to microfracture. In an attempt to further improve the quality of repair, we loaded these scaffolds with a known chemotactic factor, transforming growth factor (TGF)-β3. In vivo such TGF-β3 loaded scaffolds promoted superior articular cartilage regeneration. This study demonstrates that ECM derived biomaterials, either alone and particularly when combined with exogenous growth factors, can successfully treat articular cartilage defects in a clinically relevant large animal model.
Collapse
Affiliation(s)
- David C. Browe
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
| | - Ross Burdis
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Pedro J. Díaz-Payno
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Fiona E. Freeman
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Institute for Medical Engineering and Science Massachusetts Institute of Technology Cambridge, MA, 02142, USA
- Department of Medicine Division of Engineering in Medicine Brigham and Women’s Hospital Harvard Medical School Boston, MA, 02115, USA
| | - Jessica M. Nulty
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Pieter A.J. Brama
- Section of Veterinary Clinical Sciences, School of Veterinary Medicine, University College Dublin, Ireland
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
7
|
Zlotnick HM, Locke R, Hemdev S, Stoeckl BD, Gupta S, Peredo AP, Steinberg DR, Carey JL, Lee D, Dodge GR, Mauck RL. Gravity-based patterning of osteogenic factors to preserve bone structure after osteochondral injury in a large animal model. Biofabrication 2022; 14. [PMID: 35714576 DOI: 10.1088/1758-5090/ac79cd] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/17/2022] [Indexed: 11/12/2022]
Abstract
Chondral and osteochondral repair strategies are limited by adverse bony changes that occur after injury. Bone resorption can cause entire scaffolds, engineered tissues, or even endogenous repair tissues to subside below the cartilage surface. To address this translational issue, we fabricated thick-shelled poly(D,L-lactide-co-glycolide) (PLGA) microcapsules containing the pro-osteogenic agents triiodothyronine and ß-glycerophosphate, and delivered these microcapsules in a large animal model of osteochondral injury to preserve bone structure. We demonstrate that the developed microcapsules ruptured in vitro under increasing mechanical loads, and readily sink within a liquid solution, enabling gravity-based patterning along the osteochondral surface. In a large animal, these mechanically-actived microcapsules (MAMCs) were assessed through two different delivery strategies. Intra-articular injection of control MAMCs enabled fluorescent quantification of MAMC rupture and cargo release in a synovial joint setting over time in vivo. This joint-wide injection also confirmed that the MAMCs do not elicit an inflammatory response. In the contralateral hindlimbs, chondral defects were created, MAMCs were patterned in situ, and nanofracture (Nfx), a clinically utilized method to promote cartilage repair, was performed. The NFx holes enabled marrow-derived stromal cells to enter the defect area and served as repeatable bone injury sites to monitor over time. Animals were evaluated 1 and 2 weeks after injection and surgery. Analysis of injected MAMCs showed that bioactive cargo was released in a controlled fashion over 2 weeks. A bone fluorochrome label injected at the time of surgery displayed maintenance of mineral labeling in the therapeutic group, but resorption in both control groups. Alkaline phosphatase (AP) staining at the osteochondral interface revealed higher AP activity in defects treated with therapeutic MAMCs. Overall, this study develops a gravity-based approach to pattern bioactive factors along the osteochondral interface, and applies this novel biofabrication strategy to preserve bone structure after osteochondral injury.
Collapse
Affiliation(s)
- Hannah M Zlotnick
- Department of Bioengineering , University of Pennsylvania School of Engineering and Applied Science, 210 South 33rd Street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Ryan Locke
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Sanjana Hemdev
- Department of Biotechnology, University of Pennsylvania School of Engineering and Applied Science, 220 South 33rd Street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Brendan D Stoeckl
- Department of Bioengineering , University of Pennsylvania School of Engineering and Applied Science, 210 South 33rd Street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Sachin Gupta
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Ana P Peredo
- Department of Bioengineering , University of Pennsylvania School of Engineering and Applied Science, 210 South 33rd Street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - David R Steinberg
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - James L Carey
- Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania School of Engineering and Applied Science, 210 South 33rd Street, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - George R Dodge
- Department of Orthopaedic Surgery, University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Philadelphia, Pennsylvania, 19104, UNITED STATES
| | - Robert L Mauck
- Department of Orthopaedic Surgery , University of Pennsylvania Perelman School of Medicine, 3450 Hamilton Walk, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|