1
|
Bernabei G, De Simone G, Becarelli S, Di Mambro R, Gentini A, Di Gregorio S. Co-metabolic growth and microbial diversity: Keys for the depletion of the α, δ, β and γ-HCH isomers. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135963. [PMID: 39341188 DOI: 10.1016/j.jhazmat.2024.135963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
The objective of this study was the isolation and enrichment of microbiomes capable of degrading the main hexachlorocyclohexane isomers quantified in environmental matrices, e.g.: the α, δ, β and γ-HCH isomers. Four microbiomes were isolated and enriched from an HCH-contaminated dumpsite in Italy, both in the presence of HCH isomers (1:1:1:1) as the sole carbon sources and under co-metabolic growth conditions in presence of glucose (0.1 % v/v). The microbiomes were assessed for their relevant metabolic capabilities. A quantitative metabarcoding approach was employed to analyze the compositional evolution of the four microbiomes during the enrichment phase and the phase of testing of the HCH isomers degradation kinetics. The use of a co-metabolic substrate during enrichment process was essential for selecting microbiomes with higher biodiversity. All microbiomes efficiently degraded the α, δ, and γ-HCH isomers. The highest efficiency in the β-HCH degradation capacity was positively correlated to the highest biodiversity of the microbiome, and the involvement of Chryseobacterium and Asinibacterium sps. have been proposed for a recorded increment in bacterial load during the HCH degradation process.
Collapse
|
2
|
Singh A, Yadav VK, Chundawat RS, Soltane R, Awwad NS, Ibrahium HA, Yadav KK, Vicas SI. Enhancing plant growth promoting rhizobacterial activities through consortium exposure: A review. Front Bioeng Biotechnol 2023; 11:1099999. [PMID: 36865031 PMCID: PMC9972119 DOI: 10.3389/fbioe.2023.1099999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Plant Growth Promoting Rhizobacteria (PGPR) has gained immense importance in the last decade due to its in-depth study and the role of the rhizosphere as an ecological unit in the biosphere. A putative PGPR is considered PGPR only when it may have a positive impact on the plant after inoculation. From the various pieces of literature, it has been found that these bacteria improve the growth of plants and their products through their plant growth-promoting activities. A microbial consortium has a positive effect on plant growth-promoting (PGP) activities evident by the literature. In the natural ecosystem, rhizobacteria interact synergistically and antagonistically with each other in the form of a consortium, but in a natural consortium, there are various oscillating environmental conditions that affect the potential mechanism of the consortium. For the sustainable development of our ecological environment, it is our utmost necessity to maintain the stability of the rhizobacterial consortium in fluctuating environmental conditions. In the last decade, various studies have been conducted to design synthetic rhizobacterial consortium that helps to integrate cross-feeding over microbial strains and reveal their social interactions. In this review, the authors have emphasized covering all the studies on designing synthetic rhizobacterial consortiums, their strategies, mechanism, and their application in the field of environmental ecology and biotechnology.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | | |
Collapse
|