1
|
Bautista-Pinzón F, Fonseca-Ordoñez J, Falla-Obando M, Gonzales-Tuta J, Diaz-Barrera L. Streptomyces as a Novel Biotool for Azo Pigments Remediation in Contaminated Scenarios. Front Biosci (Elite Ed) 2024; 16:29. [PMID: 39344382 DOI: 10.31083/j.fbe1603029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/11/2024] [Accepted: 06/05/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Azo pigments are widely used in the textile and leather industry, and they generate diverse contaminants (mainly in wastewater effluents) that affect biological systems, the rhizosphere community, and the natural activities of certain species. METHODS This review was performed according to the Systematic Reviews and Meta Analyses (PRISMA) methodology. RESULTS In the last decade, the use of Streptomyces species as biological azo-degraders has increased, and these bacteria are mainly isolated from mangroves, dye-contaminated soil, and marine sediments. Azo pigments such as acid orange, indigo carmine, Congo red, and Evans blue are the most studied compounds for degradation, and Streptomyces produces extracellular enzymes such as peroxidase, laccase, and azo reductase. These enzymes cleave the molecule through asymmetric cleavage, followed by oxidative cleavage, desulfonation, deamination, and demethylation. Typically, some lignin-derived and phenolic compounds are used as mediators to improve enzyme activity. The degradation process generates diverse compounds, the majority of which are toxic to human cells and, in some cases, can improve the germination process in some horticulture plants. CONCLUSIONS Future research should include analytical methods to detect all of the molecules that are generated in degradation processes to determine the involved reactions. Moreover, future studies should delve into consortium studies to improve degradation efficiency and observe the relationship between microorganisms to generate scale-up biotechnological applications in the wastewater treatment industry.
Collapse
Affiliation(s)
- Fernando Bautista-Pinzón
- Master Program in Process Design and Management, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Juan Fonseca-Ordoñez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Chemical Engineering Program, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Mayerlen Falla-Obando
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Chemical Engineering Program, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Jairo Gonzales-Tuta
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Chemical Engineering Program, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| | - Luis Diaz-Barrera
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
- Doctoral Program of Biosciences, School of Engineering, Universidad de La Sabana, 140013 Chía, Colombia
| |
Collapse
|
2
|
Sodhi AS, Bhatia S, Batra N. Laccase: Sustainable production strategies, heterologous expression and potential biotechnological applications. Int J Biol Macromol 2024; 280:135745. [PMID: 39293621 DOI: 10.1016/j.ijbiomac.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India.
| |
Collapse
|
3
|
El Awady ME, El-Shall FN, Mohamed GE, Abd-Elaziz AM, Abdel-Monem MO, Hassan MG. Exploring the decolorization efficiency and biodegradation mechanisms of different functional textile azo dyes by Streptomyces albidoflavus 3MGH. BMC Microbiol 2024; 24:210. [PMID: 38877404 PMCID: PMC11179346 DOI: 10.1186/s12866-024-03347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024] Open
Abstract
Efficiently mitigating and managing environmental pollution caused by the improper disposal of dyes and effluents from the textile industry is of great importance. This study evaluated the effectiveness of Streptomyces albidoflavus 3MGH in decolorizing and degrading three different azo dyes, namely Reactive Orange 122 (RO 122), Direct Blue 15 (DB 15), and Direct Black 38 (DB 38). Various analytical techniques, such as Fourier Transform Infrared (FTIR) spectroscopy, High-Performance Liquid Chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) were used to analyze the degraded byproducts of the dyes. S. albidoflavus 3MGH demonstrated a strong capability to decolorize RO 122, DB 15, and DB 38, achieving up to 60.74%, 61.38%, and 53.43% decolorization within 5 days at a concentration of 0.3 g/L, respectively. The optimal conditions for the maximum decolorization of these azo dyes were found to be a temperature of 35 °C, a pH of 6, sucrose as a carbon source, and beef extract as a nitrogen source. Additionally, after optimization of the decolorization process, treatment with S. albidoflavus 3MGH resulted in significant reductions of 94.4%, 86.3%, and 68.2% in the total organic carbon of RO 122, DB 15, and DB 38, respectively. After the treatment process, we found the specific activity of the laccase enzyme, one of the mediating enzymes of the degradation mechanism, to be 5.96 U/mg. FT-IR spectroscopy analysis of the degraded metabolites showed specific changes and shifts in peaks compared to the control samples. GC-MS analysis revealed the presence of metabolites such as benzene, biphenyl, and naphthalene derivatives. Overall, this study demonstrated the potential of S. albidoflavus 3MGH for the effective decolorization and degradation of different azo dyes. The findings were validated through various analytical techniques, shedding light on the biodegradation mechanism employed by this strain.
Collapse
Affiliation(s)
- Mohamed E El Awady
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, El- Buhouth St. 33, Dokki, Cairo, Egypt
| | - Fatma N El-Shall
- Dyeing, Printing and Textile Auxiliary Department, National Research Centre, El-Buhouth St. 33, Dokki, Cairo, 12622, Egypt
| | - Ghada E Mohamed
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - Ahmed M Abd-Elaziz
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, El-Buhouth St. 33, Dokki, Cairo, Egypt
| | - Mohamed O Abdel-Monem
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt.
| | - Mervat G Hassan
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
4
|
Cuebas‐Irizarry MF, Grunden AM. Streptomyces spp. as biocatalyst sources in pulp and paper and textile industries: Biodegradation, bioconversion and valorization of waste. Microb Biotechnol 2024; 17:e14258. [PMID: 37017414 PMCID: PMC10832569 DOI: 10.1111/1751-7915.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Complex polymers represent a challenge for remediating environmental pollution and an opportunity for microbial-catalysed conversion to generate valorized chemicals. Members of the genus Streptomyces are of interest because of their potential use in biotechnological applications. Their versatility makes them excellent sources of biocatalysts for environmentally responsible bioconversion, as they have a broad substrate range and are active over a wide range of pH and temperature. Most Streptomyces studies have focused on the isolation of strains, recombinant work and enzyme characterization for evaluating their potential for biotechnological application. This review discusses reports of Streptomyces-based technologies for use in the textile and pulp-milling industry and describes the challenges and recent advances aimed at achieving better biodegradation methods featuring these microbial catalysts. The principal points to be discussed are (1) Streptomyces' enzymes for use in dye decolorization and lignocellulosic biodegradation, (2) biotechnological processes for textile and pulp and paper waste treatment and (3) challenges and advances for textile and pulp and paper effluent treatment.
Collapse
Affiliation(s)
- Mara F. Cuebas‐Irizarry
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| | - Amy M. Grunden
- Department of Plant and Microbial BiologyNorth Carolina State UniversityPlant Sciences Building Rm 2323, 840 Oval DrRaleighNorth Carolina27606USA
| |
Collapse
|
5
|
Li R, Wang Y, Zeng F, Si C, Zhang D, Xu W, Shi J. Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degradation. Int J Mol Sci 2023; 24:15244. [PMID: 37894924 PMCID: PMC10607072 DOI: 10.3390/ijms242015244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing concerns over the environment and the growing demand for sustainable water treatment technologies have sparked substantial interest in the field of photocatalytic dye removal. Polyoxometalates (POMs), known for their intricate metal-oxygen anion clusters, have received considerable attention due to their versatile structures, compositions, and efficient facilitation of photo-induced electron transfers. This paper provides an overview of the ongoing research progress in the realm of photocatalytic dye degradation utilizing POMs and their derivatives. The details encompass the compositions of catalysts, catalytic efficacy, and light absorption propensities, and the photocatalytic mechanisms inherent to POM-based materials for dye degradation are exhaustively expounded upon. This review not only contributes to a better understanding of the potential of POM-based materials in photocatalytic dye degradation, but also presents the advancements and future prospects in this domain of environmental remediation.
Collapse
Affiliation(s)
| | | | | | | | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| | | | - Junyou Shi
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| |
Collapse
|
6
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Eldin AM, Al-Sharnouby SFS, ElGabry KIM, Ramadan AI. Aspergillus terreus, Penicillium sp. and Bacillus sp. isolated from mangrove soil having laccase and peroxidase role in depolymerization of polyethylene bags. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Structural Properties, Genomic Distribution of Laccases from Streptomyces and Their Potential Applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
|
10
|
Salwan R, Kaur R, Sharma V. Genomic Organization of Streptomyces flavotricini NGL1 and Streptomyces erythrochromogenes HMS4 Reveals Differential Plant Beneficial Attributes and Laccase Production Capabilities. Mol Biotechnol 2021; 64:447-462. [PMID: 34782960 DOI: 10.1007/s12033-021-00424-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022]
Abstract
The genus Streptomyces has been explored in industrial sectors due to its endurance to environmental stresses, the production of a plethora of biomolecules, the biological remediation of soils, and alleviating plant stresses. The whole genome of NGL1 and HMS4 was sequenced due to the specific laccase activity against 2,6-dimethoxyphenol (2,6-DMP) and differential plant beneficial attributes. The deduced genome of 8.85 Mbp and 7.73 Mbp in size with a G+C content of 72.03% and 72.3% was obtained for NGL1 and HMS4, respectively. A total of 8438 and 7322 protein coding genes, 155 (130 tRNA, 25 rRNA) and 145 tRNA (121 tRNA, 24 rRNA) coding genes were predicted in NGL1 and HMS4, respectively. The comparative genomics of NGL1 and HMS4 showed 185 and 162 genes encoding for carbohydrate-active enzymes, respectively. The genomic ability of these strains to encode carbohydrate-active enzymes, laccase, and diversity of BGCs, along with plant beneficial attributes to suppress the plant pathogens can be used for several industrial and agricultural applications.
Collapse
Affiliation(s)
- Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture & Forestry, Neri, Hamirpur, HP, 177 001, India.
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, PB, 140 413, India.
| |
Collapse
|