1
|
Gassa N, Boonstra M, Ondrusova1 B, Svehlikova J, Brooks D, Narayan A, Rababah AS, van Dam P, MacLeod R, Tate J, Zemzemi N. Effect of Segmentation Uncertainty on the ECGI Inverse Problem Solution and Source Localization. COMPUTING IN CARDIOLOGY 2022; 49:10.22489/cinc.2022.275. [PMID: 37786732 PMCID: PMC10544807 DOI: 10.22489/cinc.2022.275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Electrocardiographic Imaging (ECGI) is a promising tool to non-invasively map the electrical activity of the heart using body surface potentials (BSPs) and the patient specific anatomical data. One of the first steps of ECGI is the segmentation of the heart and torso geometries. In the clinical practice, the segmentation procedure is not fully-automated yet and is in consequence operator-dependent. We expect that the inter-operator variation in cardiac segmentation would influence the ECGI solution. This effect remains however non quantified. In the present work, we study the effect of segmentation variability on the ECGI estimation of the cardiac activity with 262 shape models generated from fifteen different segmentations. Therefore, we designed two test cases: with and without shape model uncertainty. Moreover, we used four cases for ectopic ventricular excitation and compared the ECGI results in terms of reconstructed activation times and excitation origins. The preliminary results indicate that a small variation of the activation maps can be observed with a model uncertainty but no significant effect on the source localization is observed.
Collapse
Affiliation(s)
- Narimane Gassa
- Electrophysiology and Heart Modeling Institute (IHU-Lyric), Pessac, France
- Institute of Mathematics, University of Bordeaux, Talence, France
- INRIA Bordeaux Sud-ouest, CARMEN Team, Talence, France
| | | | | | | | - Dana Brooks
- Northeastern University College of Engineering, Boston, USA
| | | | | | | | | | - Jess Tate
- University of Utah, Salt Lake City, USA
| | - Nejib Zemzemi
- Electrophysiology and Heart Modeling Institute (IHU-Lyric), Pessac, France
- Institute of Mathematics, University of Bordeaux, Talence, France
- INRIA Bordeaux Sud-ouest, CARMEN Team, Talence, France
| |
Collapse
|
2
|
Gillette K, Gsell MAF, Bouyssier J, Prassl AJ, Neic A, Vigmond EJ, Plank G. Automated Framework for the Inclusion of a His-Purkinje System in Cardiac Digital Twins of Ventricular Electrophysiology. Ann Biomed Eng 2021; 49:3143-3153. [PMID: 34431016 PMCID: PMC8671274 DOI: 10.1007/s10439-021-02825-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/26/2021] [Indexed: 11/28/2022]
Abstract
Personalized models of cardiac electrophysiology (EP) that match clinical observation with high fidelity, referred to as cardiac digital twins (CDTs), show promise as a tool for tailoring cardiac precision therapies. Building CDTs of cardiac EP relies on the ability of models to replicate the ventricular activation sequence under a broad range of conditions. Of pivotal importance is the His-Purkinje system (HPS) within the ventricles. Workflows for the generation and incorporation of HPS models are needed for use in cardiac digital twinning pipelines that aim to minimize the misfit between model predictions and clinical data such as the 12 lead electrocardiogram (ECG). We thus develop an automated two stage approach for HPS personalization. A fascicular-based model is first introduced that modulates the endocardial Purkinje network. Only emergent features of sites of earliest activation within the ventricular myocardium and a fast-conducting sub-endocardial layer are accounted for. It is then replaced by a topologically realistic Purkinje-based representation of the HPS. Feasibility of the approach is demonstrated. Equivalence between both HPS model representations is investigated by comparing activation patterns and 12 lead ECGs under both sinus rhythm and right-ventricular apical pacing. Predominant ECG morphology is preserved by both HPS models under sinus conditions, but elucidates differences during pacing.
Collapse
Affiliation(s)
- Karli Gillette
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Matthias A F Gsell
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | - Julien Bouyssier
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Anton J Prassl
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria
| | | | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France
| | - Gernot Plank
- Gottfried Schatz Research Center Biophysics, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
3
|
Gander L, Krause R, Multerer M, Pezzuto S. Space-time shape uncertainties in the forward and inverse problem of electrocardiography. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3522. [PMID: 34410040 PMCID: PMC9285968 DOI: 10.1002/cnm.3522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/27/2021] [Accepted: 08/13/2021] [Indexed: 06/08/2023]
Abstract
In electrocardiography, the "classic" inverse problem is the reconstruction of electric potentials at a surface enclosing the heart from remote recordings at the body surface and an accurate description of the anatomy. The latter being affected by noise and obtained with limited resolution due to clinical constraints, a possibly large uncertainty may be perpetuated in the inverse reconstruction. The purpose of this work is to study the effect of shape uncertainty on the forward and the inverse problem of electrocardiography. To this aim, the problem is first recast into a boundary integral formulation and then discretised with a collocation method to achieve high convergence rates and a fast time to solution. The shape uncertainty of the domain is represented by a random deformation field defined on a reference configuration. We propose a periodic-in-time covariance kernel for the random field and approximate the Karhunen-Loève expansion using low-rank techniques for fast sampling. The space-time uncertainty in the expected potential and its variance is evaluated with an anisotropic sparse quadrature approach and validated by a quasi-Monte Carlo method. We present several numerical experiments on a simplified but physiologically grounded two-dimensional geometry to illustrate the validity of the approach. The tested parametric dimension ranged from 100 up to 600. For the forward problem, the sparse quadrature is very effective. In the inverse problem, the sparse quadrature and the quasi-Monte Carlo method perform as expected, except for the total variation regularisation, where convergence is limited by lack of regularity. We finally investigate an H1/2 regularisation, which naturally stems from the boundary integral formulation, and compare it to more classical approaches.
Collapse
Affiliation(s)
- Lia Gander
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| | - Rolf Krause
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| | - Michael Multerer
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| | - Simone Pezzuto
- Center for Computational Medicine in CardiologyEuler Institute, Università della Svizzera italianaLuganoSwitzerland
| |
Collapse
|
4
|
Tate JD, Elhabian S, Zemzemi N, Good WW, van Dam P, Brooks DH, MacLeod RS. A Cardiac Shape Model for Segmentation Uncertainty Quantification. COMPUTING IN CARDIOLOGY 2021; 48:10.23919/cinc53138.2021.9662917. [PMID: 35479610 PMCID: PMC9039803 DOI: 10.23919/cinc53138.2021.9662917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Segmentation of cardiac images is a variable component of many patient specific computational pipelines, yet its impact on simulated results are still not fully understood. A hurdle to to exploring the impact of the segmentation variability is the technical challenge of building a statistical shape model of the ventricles. In this study, we improved open our previous shape analysis by creating a unified shape model including both the epicardium and endocardium. We tested four techniques within ShapeWorks to generate a ventricular shape model: standard, multidomain, hybrid multidomain, and geodesic distance. The multidomain and hybrid multidomain generated a shape model using all eleven segmentations, and the geodesic distance method generated a shape model using a subset of four segmentations. Each of the shape models captured spatially dependent characteristics of the segmentation variability, including wall thickness, annular diameter, and basal truncation. While each of the three methods have benefits, the hybrid multidomain approach provided the most accurate shape model with fewest points and may be most useful in a majority of applications.
Collapse
|
5
|
Tate JD, Good W, Zemzemi N, Boonstra M, van Dam P, Brooks DH, Narayan A, MacLeod RS. Uncertainty Quantification of the Effects of Segmentation Variability in ECGI. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2021; 12738:515-522. [PMID: 35449797 PMCID: PMC9019843 DOI: 10.1007/978-3-030-78710-3_49] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite advances in many of the techniques used in Electrocardiographic Imaging (ECGI), uncertainty remains insufficiently quantified for many aspects of the pipeline. The effect of geometric uncertainty, particularly due to segmentation variability, may be the least explored to date. We use statistical shape modeling and uncertainty quantification (UQ) to compute the effect of segmentation variability on ECGI solutions. The shape model was made with Shapeworks from nine segmentations of the same patient and incorporated into an ECGI pipeline. We computed uncertainty of the pericardial potentials and local activation times (LATs) using polynomial chaos expansion (PCE) implemented in UncertainSCI. Uncertainty in pericardial potentials from segmentation variation mirrored areas of high variability in the shape model, near the base of the heart and the right ventricular outflow tract, and that ECGI was less sensitive to uncertainty in the posterior region of the heart. Subsequently LAT calculations could vary dramatically due to segmentation variability, with a standard deviation as high as 126ms, yet mainly in regions with low conduction velocity. Our shape modeling and UQ pipeline presented possible uncertainty in ECGI due to segmentation variability and can be used by researchers to reduce said uncertainty or mitigate its effects. The demonstrated use of statistical shape modeling and UQ can also be extended to other types of modeling pipelines.
Collapse
|
6
|
Salinet J, Molero R, Schlindwein FS, Karel J, Rodrigo M, Rojo-Álvarez JL, Berenfeld O, Climent AM, Zenger B, Vanheusden F, Paredes JGS, MacLeod R, Atienza F, Guillem MS, Cluitmans M, Bonizzi P. Electrocardiographic Imaging for Atrial Fibrillation: A Perspective From Computer Models and Animal Experiments to Clinical Value. Front Physiol 2021; 12:653013. [PMID: 33995122 PMCID: PMC8120164 DOI: 10.3389/fphys.2021.653013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 01/16/2023] Open
Abstract
Electrocardiographic imaging (ECGI) is a technique to reconstruct non-invasively the electrical activity on the heart surface from body-surface potential recordings and geometric information of the torso and the heart. ECGI has shown scientific and clinical value when used to characterize and treat both atrial and ventricular arrhythmias. Regarding atrial fibrillation (AF), the characterization of the electrical propagation and the underlying substrate favoring AF is inherently more challenging than for ventricular arrhythmias, due to the progressive and heterogeneous nature of the disease and its manifestation, the small volume and wall thickness of the atria, and the relatively large role of microstructural abnormalities in AF. At the same time, ECGI has the advantage over other mapping technologies of allowing a global characterization of atrial electrical activity at every atrial beat and non-invasively. However, since ECGI is time-consuming and costly and the use of electrical mapping to guide AF ablation is still not fully established, the clinical value of ECGI for AF is still under assessment. Nonetheless, AF is known to be the manifestation of a complex interaction between electrical and structural abnormalities and therefore, true electro-anatomical-structural imaging may elucidate important key factors of AF development, progression, and treatment. Therefore, it is paramount to identify which clinical questions could be successfully addressed by ECGI when it comes to AF characterization and treatment, and which questions may be beyond its technical limitations. In this manuscript we review the questions that researchers have tried to address on the use of ECGI for AF characterization and treatment guidance (for example, localization of AF triggers and sustaining mechanisms), and we discuss the technological requirements and validation. We address experimental and clinical results, limitations, and future challenges for fruitful application of ECGI for AF understanding and management. We pay attention to existing techniques and clinical application, to computer models and (animal or human) experiments, to challenges of methodological and clinical validation. The overall objective of the study is to provide a consensus on valuable directions that ECGI research may take to provide future improvements in AF characterization and treatment guidance.
Collapse
Affiliation(s)
- João Salinet
- Biomedical Engineering, Centre for Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC, São Bernardo do Campo, Brazil
| | - Rubén Molero
- ITACA Institute, Universitat Politècnica de València, València, Spain
| | - Fernando S. Schlindwein
- School of Engineering, University of Leicester, United Kingdom and National Institute for Health Research, Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Joël Karel
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands
| | - Miguel Rodrigo
- Electronic Engineering Department, Universitat de València, València, Spain
| | - José Luis Rojo-Álvarez
- Department of Signal Theory and Communications and Telematic Systems and Computation, University Rey Juan Carlos, Madrid, Spain
| | - Omer Berenfeld
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States
| | - Andreu M. Climent
- ITACA Institute, Universitat Politècnica de València, València, Spain
| | - Brian Zenger
- Biomedical Engineering Department, Scientific Computing and Imaging Institute (SCI), and Cardiovascular Research and Training Institute (CVRTI), The University of Utah, Salt Lake City, UT, United States
| | - Frederique Vanheusden
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Jimena Gabriela Siles Paredes
- Biomedical Engineering, Centre for Engineering, Modelling and Applied Social Sciences (CECS), Federal University of ABC, São Bernardo do Campo, Brazil
| | - Rob MacLeod
- Biomedical Engineering Department, Scientific Computing and Imaging Institute (SCI), and Cardiovascular Research and Training Institute (CVRTI), The University of Utah, Salt Lake City, UT, United States
| | - Felipe Atienza
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - María S. Guillem
- ITACA Institute, Universitat Politècnica de València, València, Spain
| | - Matthijs Cluitmans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Pietro Bonizzi
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Tate J, van Dam E, Good W, Bergquist J, van Dam P, MacLeod R. A Unified Pipeline for ECG Imaging Testing. COMPUTING IN CARDIOLOGY 2020; 46. [PMID: 32201705 DOI: 10.22489/cinc.2019.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Consortium for ECG Imaging (CEI) has formed several collaborative projects to evaluate and improve technical aspects of Electrocardiographic Imaging (ECGI), but these efforts are not yet implemented into an integrated software framework. We developed a framework to unify the multiple techniques and stages of ECGI into one pipeline. This framework merges existing open source packages: SCIRun, a problem solving environment; the Forward/Inverse toolkit, a series of SCIRun modules for ECGI; and PFEIFER, a cardiac signal pre-processing tool. The Unified ECGI Toolkit (UETK), combined with the EDGAR dataset, allows users to test and validate a vast array of parameters within each stage of the ECGI pipeline. We expect that this unified tool will help introduce new researchers to ECGI, facilitate interaction between the various groups working on ECGI, and establish a common approach for researchers to test and validate their ECGI techniques.
Collapse
Affiliation(s)
- Jess Tate
- University of Utah, Salt Lake City, Utah, USA
| | | | - Wilson Good
- University of Utah, Salt Lake City, Utah, USA
| | | | | | - Rob MacLeod
- University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Tate JD, Schuler S, Dössel O, MacLeod RS, Oostendorp TF. Correcting Undersampled Cardiac Sources in Equivalent Double Layer Forward Simulations. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2019; 11504:147-155. [PMID: 31799513 DOI: 10.1007/978-3-030-21949-9_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrocardiographic Imaging (ECGI) requires robust ECG forward simulations to accurately calculate cardiac activity. However, many questions remain regarding ECG forward simulations, for instance: there are not common guidelines for the required cardiac source sampling. In this study we test equivalent double layer (EDL) forward simulations with differing cardiac source resolutions and different spatial interpolation techniques. The goal is to reduce error caused by undersampling of cardiac sources and provide guidelines to reduce said source undersampling in ECG forward simulations. Using a simulated dataset sampled at 5 spatial resolutions, we computed body surface potentials using an EDL forward simulation pipeline. We tested two spatial interpolation methods to reduce error due to undersampling triangle weighting and triangle splitting. This forward modeling pipeline showed high frequency artifacts in the predicted ECG time signals when the cardiac source resolution was too low. These low resolutions could also cause shifts in extrema location on the body surface maps. However, these errors in predicted potentials can be mitigated by using a spatial interpolation method. Using spatial interpolation can reduce the number of nodes required for accurate body surface potentials from 9,218 to 2,306. Spatial interpolation in this forward model could also help improve accuracy and reduce computational cost in subsequent ECGI applications.
Collapse
Affiliation(s)
- Jess D Tate
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | | | - Olaf Dössel
- Institute of Biomed. Eng., KIT, Karlsruhe, Germany
| | - Rob S MacLeod
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA
| | - Thom F Oostendorp
- Donders Centre for Neuroscience, Radboud University, Nijmegen, Netherlands
| |
Collapse
|