1
|
Zhuoma P, Tondrob D, Qunpei T, Fu J, Dan S. Muti-omics revealed the mechanisms of MT-conferred tolerance of Elymus nutans Griseb. to low temperature at XiZang. BMC PLANT BIOLOGY 2024; 24:901. [PMID: 39350016 PMCID: PMC11440804 DOI: 10.1186/s12870-024-05583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Low temperature seriously limited the development of grass and crops in plateau. Thus, it is urgent to develop an effective strategy for improving the plant cold tolerance and elucidate the underlying mechanisms. RESULTS We found that MT alleviated the effects of cold stress on suppressing ENG growth, then improved cold tolerance of ENG. Integration of transcriptome and metabolome profiles showed that both cold exposure (TW) and MT reprogrammed the transcription pattern of galactose and flavonoids biosynthesis, leading to changes in compositions of soluble sugar and flavonoids in ENG. Additionally, TW inhibited the photosynthesis, and destroyed the antioxidant system of ENG, leading to accumulation of oxidant radicals represented by MDA. By contrast, MT promoted activities of antioxidant enzymes and flavonoid accumulation in ENG under cold condition, then reduced the MDA content and maintained normal expression of photosynthesis-related genes in ENG even under TW. Importantly, MT mainly enhanced cold tolerance of ENG via activating zeatin synthesis to regulate flavonoid biosynthesis in vivo. Typically, WRKY11 was identified to regulate MT-associated zeatin synthesis in ENG via directly binding on zeatin3 promoter. CONCLUSIONS MT could enhance ENG tolerance to cold stress via strengthening antioxidant system and especially zeatin synthesis to promote accumulation of flavonoids in ENG. Thus, our research gain insight into the global mechanisms of MT in promoting cold tolerance of ENG, then provided guidance for protecting plant from cold stress in plateau.
Collapse
Affiliation(s)
- Pubu Zhuoma
- Improvement, Institute of Pratacultural Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, 850000, China
| | - Dorjeeh Tondrob
- Improvement, Institute of Pratacultural Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, 850000, China.
- State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Xizang, 850000, China.
| | - Tudeng Qunpei
- Improvement, Institute of Pratacultural Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, 850000, China
| | - Juanjuan Fu
- Department of Grassland Science, College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Xizang, 850000, China.
| | - Sang Dan
- Improvement, Institute of Pratacultural Science, Xizang Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Xizang, 850000, China
| |
Collapse
|
2
|
Suthaparan A, Stensvand A. Shedding the Light on Powdery Mildew: The Use of Optical Irradiation in Management of the Disease. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:289-308. [PMID: 38876113 DOI: 10.1146/annurev-phyto-021622-115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100-200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.
Collapse
Affiliation(s)
- Aruppillai Suthaparan
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences (NMBU), Ås, Norway;
| | - Arne Stensvand
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway;
| |
Collapse
|
3
|
Busch A, Gerbracht JV, Davies K, Hoecker U, Hess S. Comparative transcriptomics elucidates the cellular responses of an aeroterrestrial zygnematophyte to UV radiation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3624-3642. [PMID: 38520340 PMCID: PMC11156808 DOI: 10.1093/jxb/erae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/22/2024] [Indexed: 03/25/2024]
Abstract
The zygnematophytes are the closest relatives of land plants and comprise several lineages that adapted to a life on land. Species of the genus Serritaenia form colorful, mucilaginous capsules, which surround the cells and block harmful solar radiation, one of the major terrestrial stressors. In eukaryotic algae, this 'sunscreen mucilage' represents a unique photoprotective strategy, whose induction and chemical background are unknown. We generated a de novo transcriptome of Serritaenia testaceovaginata and studied its gene regulation under moderate UV radiation (UVR) that triggers sunscreen mucilage under experimental conditions. UVR induced the repair of DNA and the photosynthetic apparatus as well as the synthesis of aromatic specialized metabolites. Specifically, we observed pronounced expressional changes in the production of aromatic amino acids, phenylpropanoid biosynthesis genes, potential cross-membrane transporters of phenolics, and extracellular, oxidative enzymes. Interestingly, the most up-regulated enzyme was a secreted class III peroxidase, whose embryophyte homologs are involved in apoplastic lignin formation. Overall, our findings reveal a conserved, plant-like UVR perception system (UVR8 and downstream factors) in zygnematophyte algae and point to a polyphenolic origin of the sunscreen pigment of Serritaenia, whose synthesis might be extracellular and oxidative, resembling that of plant lignins.
Collapse
Affiliation(s)
- Anna Busch
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Jennifer V Gerbracht
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| | - Kevin Davies
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Biocenter, University of Cologne, Zülpicher Strasse 47b, D-50674, Cologne, Germany
| | - Sebastian Hess
- Department of Biology, University of Cologne, Zülpicher Str. 47b, D-50674 Cologne, Germany
| |
Collapse
|
4
|
Mmbando GS. The recent relationship between ultraviolet-B radiation and biotic resistance in plants: a novel non-chemical strategy for managing biotic stresses. PLANT SIGNALING & BEHAVIOR 2023; 18:2191463. [PMID: 36934364 PMCID: PMC10730183 DOI: 10.1080/15592324.2023.2191463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet-B radiation (UVB; 280-315 nm) is a significant environmental factor that alters plant development, changes interactions between species, and reduces the prevalence of pests and diseases. While UVB radiation has negative effects on plant growth and performance at higher doses, at lower and ambient doses, UVB radiation acts as a non-chemical method for managing biotic stresses by having positive effects on disease resistance and genes that protect plants from pests. Understanding the recent relationship between UVB radiation and plants' biotic stresses is crucial for the development of crops that are resistant to UVB and biotic stresses. However, little is known about the recent interactions between UVB radiation and biotic stresses in plants. This review discusses the most recent connections between UVB radiation and biotic stresses in crops, including how UVB radiation affects a plant's resistance to disease and pests. The interaction of UVB radiation with pathogens and herbivores has been the subject of the most extensive research of these. This review also discusses additional potential strategies for conferring multiple UVB-biotic stress resistance in crop plants, such as controlling growth inhibition, miRNA 396 and 398 modulations, and MAP kinase. This study provides crucial knowledge and methods for scientists looking to develop multiple resistant crops that will improve global food security.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (UDOM), Dodoma, Tanzania
| |
Collapse
|
5
|
Han L, Ma K, Zhao Y, Mei C, Mamat A, Wang J, Qin L, He T. The cold-stress responsive gene DREB1A involved in low-temperature tolerance in Xinjiang wild walnut. PeerJ 2022; 10:e14021. [PMID: 36101878 PMCID: PMC9464435 DOI: 10.7717/peerj.14021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/16/2022] [Indexed: 01/19/2023] Open
Abstract
Background Low-temperatures have the potential to be a serious problem for plants and can negatively affect the normal growth and development of walnuts. DREB1/CBF (Dehydration Responsive Element Binding Protein 1/C-repeat Binding Factor), one of the most direct transcription factors in response to low-temperature stress, may improve the resistance of plants to low-temperatures by regulating their functional genes. However, few studies have been conducted in walnut. The Xinjiang wild walnut is a rare wild plant found in China, with a large number of excellent trait genes, and is hardier than cultivated walnuts in Xinjiang. Methods In this work, we identified all of the DREB1 members from the walnut genome and analyzed their expression levels in different tissues and during low-temperature stress on the Xinjiang wild walnut. The JfDREB1A gene of the Xinjiang wild walnut was cloned and transformed into Arabidopsis thaliana for functional verification. Results There were five DREB1 transcription factors in the walnut genome. Among them, the relative expression level of the DREB1A gene was significantly higher than other members in the different tissues (root, stem, leaf) and was immediately un-regulated under low-temperature stress. The overexpression of the JfDREB1A gene increased the survival rates of transgenic Arabidopsis lines, mainly through maintaining the stability of cell membrane, decreasing the electrical conductivity and increasing the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Additionally, the expression levels of cold-inducible genes like AtKIN1, AtERD10, AtRD29A, AtCOR15A and AtCOR47, were significantly increased. These results showed that the JfDREB1A gene may play an important role in the response to cold stress of the Xinjiang wild walnut. This study contributes to our understanding of the molecular mechanism of the Xinjiang wild walnut's response to low-temperature stress and will be beneficial for developing walnut cultivars with improved cold resistance.
Collapse
Affiliation(s)
- Liqun Han
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Chuang Mei
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Jixun Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables/Xinjiang Fruit Science Experiment Station, Ministry of Agriculture, Urumqi, China
| | - Ling Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Tianming He
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
6
|
Yan F, Qu D, Chen X, Zeng H, Li X, Hu CY. Metabolomics Reveals 5-Aminolevulinic Acid Improved the Ability of Tea Leaves ( Camellia sinensis L.) against Cold Stress. Metabolites 2022; 12:392. [PMID: 35629897 PMCID: PMC9144897 DOI: 10.3390/metabo12050392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Tea is an important woody crop whose cultivation is severely limited by cold stress. Although 5-aminolevulinic acid (ALA) is known to be effective in alleviating abiotic stresses in plants, knowledge of the detailed metabolic response of tea plants to exogenous ALA-induced cold resistance is still limited-a lack which restricts our ability to protect tea plants from cold stress. In the present study, we performed an in-depth metabolomics analysis to elucidate the metabolic responses of tea plants to cold stress and explore the role of ALA in improving tea plants' cold-resistance capability. Metabolic profiles showed that cold stress altered various metabolisms in tea plants, especially galactose composition and flavonoid contents. Furthermore, exogenous ALA application altered a series of metabolisms associated with cold stress. Importantly, increases in metabolites, including catechin, 3,4-dihydroxyphenylacetic acid and procyanidin B2, involved in the mechanisms of ALA improved tea plants' cold resistance. Overall, our study deciphered detailed metabolic responses of tea plants to cold stress and elucidated the mechanisms of ALA in enhancing cold resistance through rebuilding compositions of soluble carbohydrates and flavonoids. Therefore, we have provided a basis for exogenous usage of ALA to protect tea plants from cold stress.
Collapse
Affiliation(s)
- Fei Yan
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Dong Qu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
| | - Xiaohua Chen
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Haitao Zeng
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Xinsheng Li
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C, Hanzhong 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Hanzhong 723001, China
| | - Ching Yuan Hu
- Shaanxi Provincial Bioresource Key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; (F.Y.); (X.C.); (H.Z.); (X.L.)
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Oh GGK, O’Leary BM, Signorelli S, Millar AH. Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. PLANT PHYSIOLOGY 2022; 188:1521-1536. [PMID: 34919733 PMCID: PMC8896607 DOI: 10.1093/plphys/kiab578] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 05/24/2023]
Abstract
Proline (Pro) catabolism and reactive oxygen species production have been linked in mammals and Caenorhabditis elegans, while increases in leaf respiration rate follow Pro exposure in plants. Here, we investigated how alternative oxidases (AOXs) of the mitochondrial electron transport chain accommodate the large, atypical flux resulting from Pro catabolism and limit oxidative stress during Pro breakdown in mature Arabidopsis (Arabidopsis thaliana) leaves. Following Pro treatment, AOX1a and AOX1d accumulate at transcript and protein levels, with AOX1d approaching the level of the typically dominant AOX1a isoform. We therefore sought to determine the function of both AOX isoforms under Pro respiring conditions. Oxygen consumption rate measurements in aox1a and aox1d leaves suggested these AOXs can functionally compensate for each other to establish enhanced AOX catalytic capacity in response to Pro. Generation of aox1a.aox1d lines showed complete loss of AOX proteins and activity upon Pro treatment, yet full respiratory induction in response to Pro remained possible via the cytochrome pathway. However, aox1a.aox1d leaves displayed symptoms of elevated oxidative stress and suffered increased oxidative damage during Pro metabolism compared to the wild-type (WT) or the single mutants. During recovery from salt stress, when relatively high rates of Pro catabolism occur naturally, photosynthetic rates in aox1a.aox1d recovered slower than in the WT or the single aox lines, showing that both AOX1a and AOX1d are beneficial for cellular metabolism during Pro drawdown following osmotic stress. This work provides physiological evidence of a beneficial role for AOX1a but also the less studied AOX1d isoform in allowing safe catabolism of alternative respiratory substrates like Pro.
Collapse
Affiliation(s)
- Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Brendan M O’Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Saskatoon Research and Development Centre, Agriculture and Agri-food, Saskatoon, SK S7N 0X2, Canada
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Uruguay
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
8
|
Rui P, Yang X, Xu S, Wang Z, Zhou X, Jiang L, Jiang T. FvZFP1 confers transgenic Nicotiana benthamiana resistance against plant pathogens and improves tolerance to abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111176. [PMID: 35151459 DOI: 10.1016/j.plantsci.2021.111176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/22/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Zinc finger proteins can induce plant resistance and activate the expression of molecules involved in the resistance pathway in response to harsh environmental conditions. Previously, we found that a novel Fragaria vesca zinc finger protein interacts with the P6 protein encoded by a strawberry vein banding virus. However, the molecular mechanism of the zinc finger protein in plant stress resistance is still unknown. In this study, we reported the identification and functional characterization of the RING finger and CHY zinc finger domain-containing protein 1 (FvZFP1). The overexpression of FvZFP1 in Nicotiana benthamiana enhanced resistance to tobacco mosaic virus (TMV) and Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) infection by increasing ROS content. Additionally, FvZFP1 overexpression upregulated salicylic acid (SA) response-related gene expression as well as SA accumulation following TMV and Pst DC3000 infection. Furthermore, FvZFP1 overexpression resulted in increased salinity and drought stress tolerance by increasing SOD activity and decreasing MDA content. Overexpression of FvZFP1 also activated the ABA pathway under salinity or drought conditions. To our knowledge, this is the first study on the involvement of F. vesca zinc finger protein in crosstalk between biotic and abiotic stress signaling pathways, suggesting that FvZFP1 is a candidate gene for the improvement of resistance in response to multiple stresses.
Collapse
Affiliation(s)
- Penghuan Rui
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Xianchu Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Shiqiang Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, People's Republic of China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, 230036, People's Republic of China; Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
9
|
Yang X, Luo Y, Bai H, Li X, Tang S, Liao X, Zhang L, Liu Q. DgMYB2 improves cold resistance in chrysanthemum by directly targeting DgGPX1. HORTICULTURE RESEARCH 2022; 9:uhab028. [PMID: 35039835 PMCID: PMC8801720 DOI: 10.1093/hr/uhab028] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/18/2022] [Accepted: 10/03/2021] [Indexed: 05/29/2023]
Abstract
MYB transcription factors play important roles in plant responses to cold stress, but the associated underlying mechanisms remain unclear. In this study, a cold-induced MYB transcription factor, DgMYB2, was isolated from chrysanthemum (Chrysanthemum morifolium Ramat). DgMYB2 was localized to the nucleus and exhibited transactivational activity. Overexpression of DgMYB2 improved cold tolerance in chrysanthemum, while cold tolerance in the antisense suppression lines decreased compared to that of the wild type. Additionally, electrophoretic mobility shift assays, chromatin immunoprecipitation, luciferase complementary imaging analysis, and dual-luciferase reporter gene detection experiments confirmed that DgMYB2 directly targets DgGPX1 and increases the activity of glutathione peroxidase to reduce the accumulation of reactive oxygen species, thereby improving cold resistance in chrysanthemum.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Yunchen Luo
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Huiru Bai
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Xin Li
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Si Tang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Xiaoqin Liao
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| | - Qinglin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, China
| |
Collapse
|
10
|
Meyer P, Van de Poel B, De Coninck B. UV-B light and its application potential to reduce disease and pest incidence in crops. HORTICULTURE RESEARCH 2021; 8:194. [PMID: 34465753 PMCID: PMC8408258 DOI: 10.1038/s41438-021-00629-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 05/03/2023]
Abstract
Ultraviolet-B radiation (280-315 nm), perceived by the plant photoreceptor UVR8, is a key environmental signal that influences plant growth and development and can reduce disease and pest incidence. The positive effect of UV-B on disease resistance and incidence in various plant species supports the implementation of supplemental UV-B radiation in sustainable crop production. However, despite many studies focusing on UV-B light, there is no consensus on the best mode of application. This review aims to analyze, evaluate, and organize the different application strategies of UV-B radiation in crop production with a focus on disease resistance. We summarize the physiological effects of UV-B light on plants and discuss how plants perceive and transduce UV-B light by the UVR8 photoreceptor as well as how this perception alters plant specialized metabolite production. Next, we bring together conclusions of various studies with respect to different UV-B application methods to improve plant resistance. In general, supplemental UV-B light has a positive effect on disease resistance in many plant-pathogen combinations, mainly through the induction of the production of specialized metabolites. However, many variables (UV-B light source, plant species, dose and intensity, timing during the day, duration, background light, etc.) make it difficult to compare and draw general conclusions. We compiled the information of recent studies on UV-B light applications, including e.g., details on the UV-B light source, experimental set-up, calculated UV-B light dose, intensity, and duration. This review provides practical insights and facilitates future research on UV-B radiation as a promising tool to reduce disease and pest incidence.
Collapse
Affiliation(s)
- Prisca Meyer
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium
| | - Barbara De Coninck
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
11
|
Reactive Oxygen Species Accumulation Strongly Allied with Genetic Male Sterility Convertible to Cytoplasmic Male Sterility in Kenaf. Int J Mol Sci 2021; 22:ijms22031107. [PMID: 33498664 PMCID: PMC7866071 DOI: 10.3390/ijms22031107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Male sterility (MS) plays a key role in the hybrid breed production of plants. Researchers have focused on the association between genetic male sterility (GMS) and cytoplasmic male sterility (CMS) in kenaf. In this study, P9BS (a natural GMS mutant of the kenaf line P9B) and male plants of P9B were used as parents in multiple backcross generations to produce P9SA, a CMS line with stable sterility, to explore the molecular mechanisms of the association between GMS and CMS. The anthers of the maintainer (P9B), GMS (P9BS), and CMS (P9SA) lines were compared through phenotypic, cell morphological, physiological, biochemical observations, and transcriptome analysis. Premature degradation of the tapetum was observed at the mononuclear stage in P9BS and P9SA, which also had lower activity of reactive oxygen species (ROS) scavenging enzymes compared with P9B. Many coexpressed differentially expressed genes were related to ROS balance, including ATP synthase, electron chain transfer, and ROS scavenging processes were upregulated in P9B. CMS plants had a higher ROS accumulation than GMS plants. The MDA content in P9SA was 3.2 times that of P9BS, and therefore, a higher degree of abortion occurred in P9SA, which may indicate that the conversion between CMS and GMS is related to intracellular ROS accumulation. Our study adds new insights into the natural transformation of GMS and CMS in plants in general and kenaf in particular.
Collapse
|
12
|
Bernacki MJ, Czarnocka W, Zaborowska M, Różańska E, Labudda M, Rusaczonek A, Witoń D, Karpiński S. EDS1-Dependent Cell Death and the Antioxidant System in Arabidopsis Leaves is Deregulated by the Mammalian Bax. Cells 2020; 9:cells9112454. [PMID: 33182774 PMCID: PMC7698216 DOI: 10.3390/cells9112454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death is the ultimate end of a cell cycle that occurs in all living organisms during development or responses to biotic and abiotic stresses. In the course of evolution, plants and animals evolve various molecular mechanisms to regulate cell death; however, some of them are conserved among both these kingdoms. It was found that mammalian proapoptotic BCL-2 associated X (Bax) protein, when expressed in plants, induces cell death, similar to hypersensitive response (HR). It was also shown that changes in the expression level of genes encoding proteins involved in stress response or oxidative status regulation mitigate Bax-induced plant cell death. In our study, we focused on the evolutional compatibility of animal and plant cell death molecular mechanisms. Therefore, we studied the deregulation of reactive oxygen species burst and HR-like propagation in Arabidopsis thaliana expressing mammalian Bax. We were able to diminish Bax-induced oxidative stress and HR progression through the genetic cross with plants mutated in ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), which is a plant-positive HR regulator. Plants expressing the mouse Bax gene in eds1-1 null mutant background demonstrated less pronounced cell death and exhibited higher antioxidant system efficiency compared to Bax-expressing plants. Moreover, eds1/Bax plants did not show HR marker genes induction, as in the case of the Bax-expressing line. The present study indicates some common molecular features between animal and plant cell death regulation and can be useful to better understand the evolution of cell death mechanisms in plants and animals.
Collapse
Affiliation(s)
- Maciej Jerzy Bernacki
- Institute of Technology and Life Sciences, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland;
| | - Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Magdalena Zaborowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland;
| | - Damian Witoń
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska Street 159, 02-776 Warsaw, Poland; (W.C.); (M.Z.); (A.R.); (D.W.)
- Correspondence:
| |
Collapse
|
13
|
Fedenia L, Klein RR, Dykes L, Rooney WL, Klein PE. Phenotypic, Phytochemical, and Transcriptomic Analysis of Black Sorghum (Sorghum bicolor L. ) Pericarp in Response to Light Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9917-9929. [PMID: 32822185 DOI: 10.1021/acs.jafc.0c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black sorghum [Sorghum bicolor (L.) Moench] is characterized by the black appearance of the pericarp and production of 3-deoxyanthocyanidins (3-DOA), which are valued for their cytotoxicity to cancer cells and as natural food colorants and antioxidant additives. The black pericarp phenotype is not fully penetrant in all environments, which implicates the light spectrum and/or photoperiod as the critical factor for trait expression. In this study, black- or red-pericarp genotypes were grown under regimes of visible light, visible light supplemented with UVA or supplemented with UVA plus UVB (or dark control). Pericarp 3-DOAs and pericarp pigmentation were maximized in the black genotype exposed to a light regime supplemented with UVB. Changes in gene expression during black pericarp development revealed that ultraviolet light activates genes related to plant defense, reactive oxygen species, and secondary metabolism, suggesting that 3-DOA accumulation is associated with activation of flavonoid biosynthesis and several overlapping defense and stress signaling pathways.
Collapse
Affiliation(s)
- Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, Texas 77843, United States
| | - Robert R Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, Texas 77845, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota 58102, United States
| | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, Texas 77843, United States
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
14
|
Goyal RK, Fatima T, Topuz M, Bernadec A, Sicher R, Handa AK, Mattoo AK. Pathogenesis-Related Protein 1b1 (PR1b1) Is a Major Tomato Fruit Protein Responsive to Chilling Temperature and Upregulated in High Polyamine Transgenic Genotypes. FRONTIERS IN PLANT SCIENCE 2016; 7:901. [PMID: 27446131 PMCID: PMC4916175 DOI: 10.3389/fpls.2016.00901] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/08/2016] [Indexed: 05/19/2023]
Abstract
Plants execute an array of mechanisms in response to stress which include upregulation of defense-related proteins and changes in specific metabolites. Polyamines - putrescine (Put), spermidine (Spd), and spermine (Spm) - are metabolites commonly found associated with abiotic stresses such as chilling stress. We have generated two transgenic tomato lines (556HO and 579HO) that express yeast S-adenosylmethionine decarboxylase and specifically accumulate Spd and Spm in fruits in comparison to fruits from control (556AZ) plants (Mehta et al., 2002). Tomato fruits undergo chilling injury at temperatures below 13°C. The high Spd and Spm tomato together with the control azygous line were utilized to address role(s) of polyamines in chilling-injury signaling. Exposure to chilling temperature (2°C) led to several-fold increase in the Put content in all the lines. Upon re-warming of the fruits at 20°C, the levels of Spd and Spm increased further in the fruit of the two transgenic lines, the higher levels remaining stable for 15 days after re-warming as compared to the fruit from the control line. Profiling their steady state proteins before and after re-warming highlighted a protein of ∼14 kD. Using proteomics approach, protein sequencing and immunoblotting, the ∼14-kD protein was identified as the pathogenesis related protein 1b1 (PR1b1). The PR1b1 protein accumulated transiently in the control fruit whose level was barely detectable at d 15 post-warming while in the fruit from both the 556HO and 579HO transgenic lines PR1b1 abundance increased and remained stable till d 15 post warming. PR1b1 gene transcripts were found low in the control fruit with a visible accumulation only on d 15 post warming; however, in both the transgenic lines it accumulated and increased soon after rewarming being several-fold higher on day 2 while in 556HO line this increase continued until d 6 than the control fruit. The chilling-induced increase in PR1b1 protein seems independent of ethylene and methyl jasmonate signaling but may be linked to salicylic acid. We propose that polyamine-mediated sustained accumulation of PR1b1 protein in post-warmed chilled tomato fruit is a pre-emptive cold stress response and possibly a defense response mechanism related to Cold Stress-Induced Disease Resistance (SIDR) phenomenon.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, BeltsvilleMD, USA
| | - Tahira Fatima
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, BeltsvilleMD, USA
| | - Muhamet Topuz
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, BeltsvilleMD, USA
| | - Anne Bernadec
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, BeltsvilleMD, USA
| | - Richard Sicher
- Crop Systems and Global Change Laboratory, The Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service – United States Department of Agriculture, BeltsvilleMD, USA
| | - Avtar K. Handa
- Department of Horticulture and Landscape Architecture, Purdue University, W. LafayetteIN, USA
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, Agricultural Research Service, United States Department of Agriculture, BeltsvilleMD, USA
| |
Collapse
|
15
|
Yokawa K, Kagenishi T, Baluška F. UV-B Induced Generation of Reactive Oxygen Species Promotes Formation of BFA-Induced Compartments in Cells of Arabidopsis Root Apices. FRONTIERS IN PLANT SCIENCE 2015; 6:1162. [PMID: 26793199 PMCID: PMC4710705 DOI: 10.3389/fpls.2015.01162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/07/2015] [Indexed: 05/10/2023]
Abstract
UV-B radiation is an important part of the electromagnetic spectrum emitted by the sun. For much of the period of biological evolution organisms have been exposed to UV radiation, and have developed diverse mechanisms to cope with this potential stress factor. Roots are usually shielded from exposure to UV by the surrounding soil, but may nevertheless be exposed to high energy radiation on the soil surface. Due to their high sensitivity to UV-B radiation, plant roots need to respond rapidly in order to minimize exposure on the surface. In addition to root gravitropism, effective light perception by roots has recently been discovered to be essential for triggering negative root phototropism in Arabidopsis. However, it is not fully understood how UV-B affects root growth and phototropism. Here, we report that UV-B induces rapid generation of reactive oxygen species which in turn promotes the formation of BFA-induced compartments in the Arabidopsis root apex. During unilateral UV-B irradiation of roots changes in auxin concentration on the illuminated side have been recorded. In conclusion, UV-B-induced and ROS-mediated stimulation of vesicle recycling promotes root growth and induces negative phototropism.
Collapse
Affiliation(s)
- Ken Yokawa
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - Tomoko Kagenishi
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, BonnGermany
- *Correspondence: František Baluška,
| |
Collapse
|
16
|
Yao Y, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants. THE PLANT CELL 2011; 23:3842-52. [PMID: 22028460 PMCID: PMC3229153 DOI: 10.1105/tpc.111.089003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Franz J. Zemp
- Department of Medical Sciences, University of Calgary, Alberta T2N 4N1, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ozan Nazim Ciftci
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
17
|
Role of root UV-B sensing in Arabidopsis early seedling development. Proc Natl Acad Sci U S A 2008; 105:21039-44. [PMID: 19075229 DOI: 10.1073/pnas.0809942106] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
All sun-exposed organisms are affected by UV-B [(UVB) 280-320 nm], an integral part of sunlight. UVB can cause stresses or act as a developmental signal depending on its fluence levels. In plants, the mechanism by which high-fluence-rate UVB causes damages and activates DNA-repair systems has been extensively studied. However, little is known about how nondamaging low-fluence-rate UVB is perceived to regulate plant morphogenesis and development. Here, we report the identification of an Arabidopsis mutant, root UVB sensitive 1 (rus1), whose primary root is hypersensitive to very low-fluence-rate (VLF) UVB. Under standard growth-chamber fluorescent white light, rus1 displays stunted root growth and fails to form postembryonic leaves. Experiments with different monochromatic light sources showed that rus1 phenotypes can be rescued if the seedlings are allowed to grow in light conditions with minimum UVB. We determined that roots, not other organs, perceive the UVB signal. Genetic and molecular analyses confirmed that the root light-sensitive phenotypes are independent of all other known plant photoreceptors. Three rus1 alleles have been identified and characterized. A map-based approach was used to identify the RUS1 locus. RUS1 encodes a protein that contains DUF647 (domain of unknown function 647), a domain highly conserved in eukaryotes. Our results demonstrate a root VLF UVB-sensing mechanism that is involved in Arabidopsis early seedling morphogenesis and development.
Collapse
|
18
|
Giraud E, Ho LHM, Clifton R, Carroll A, Estavillo G, Tan YF, Howell KA, Ivanova A, Pogson BJ, Millar AH, Whelan J. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. PLANT PHYSIOLOGY 2008; 147:595-610. [PMID: 18424626 PMCID: PMC2409015 DOI: 10.1104/pp.107.115121] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Accepted: 04/15/2008] [Indexed: 05/18/2023]
Abstract
Treatment of Arabidopsis (Arabidopsis thaliana) alternative oxidase1a (aox1a) mutant plants with moderate light under drought conditions resulted in a phenotypic difference compared with ecotype Columbia (Col-0), as evidenced by a 10-fold increase in the accumulation of anthocyanins in leaves, alterations in photosynthetic efficiency, and increased superoxide radical and reduced root growth at the early stages of seedling growth. Analysis of metabolite profiles revealed significant changes upon treatment in aox1a plants typical of combined stress treatments, and these were less pronounced or absent in Col-0 plants. These changes were accompanied by alteration in the abundance of a variety of transcripts during the stress treatment, providing a molecular fingerprint for the stress-induced phenotype of aox1a plants. Transcripts encoding proteins involved in the synthesis of anthocyanins, transcription factors, chloroplastic and mitochondrial components, cell wall synthesis, and sucrose and starch metabolism changed, indicating that effects were not confined to mitochondria, where the AOX1a protein is located. Microarray and quantitative reverse transcription-polymerase chain reaction analysis revealed that transcripts typically induced upon stress treatment or involved in antioxidant defense systems, especially chloroplast-located antioxidant defense components, had altered basal levels in untreated aox1a plants, suggesting a significant change in the basal equilibrium of signaling pathways that regulate these components. Taken together, these results indicate that aox1a plants have a greatly altered stress response even when mitochondria or the mitochondrial electron transport chain are not the primary target of the stress and that AOX1a plays a broad role in determining the normal redox balance in the cell.
Collapse
Affiliation(s)
- Estelle Giraud
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Palusa SG, Golovkin M, Shin SB, Richardson DN, Reddy ASN. Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in Arabidopsis. THE NEW PHYTOLOGIST 2007; 174:537-550. [PMID: 17447910 DOI: 10.1111/j.1469-8137.2007.02033.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pectate lyases catalyse the eliminative cleavage of de-esterified homogalacturonan in pectin, a major component of the primary cell walls in higher plants. In the completed genome of Arabidopsis, there are 26 genes (AtPLLs) that encode pectate lyase-like proteins. Here, we analysed the expression pattern of all AtPLLs in different organs, at different stages of seedling development and in response to various hormones and stresses. The expression of PLLs varied considerably in different organs, with no expression of some PLLs in vegetative organs. Interestingly, all PLL genes are expressed in flowers. Several PLLs are expressed highly in pollen, suggesting a role for these in pollen development and/or function. Analysis of expression of all PLL genes in seedlings treated with hormones, abiotic stresses and elicitors of defense responses revealed significant changes in the expression of some PLLs without affecting the other PLLs. The stability of transcripts of PLLs varied considerably among different genes. Our results indicate a complex regulation of expression of PLLs and involvement of PLLs in some of the hormonal and stress responses.
Collapse
Affiliation(s)
- Saiprasad Goud Palusa
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Maxim Golovkin
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Sung-Bong Shin
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Dale N Richardson
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
20
|
Nagata T, Yamada H, Du Z, Todoriki S, Kikuchi S. Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:1022-1030. [PMID: 15713015 DOI: 10.1021/jf0486895] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To reveal the signal transduction mechanism of the response to stress in the form of active oxygen species, we used a microarray system to analyze gene expression patterns 2 or 24 h after gamma-irradiation of Arabidopsis. gamma-Irradiation induces several signal transduction and metabolite genes. By analysis of cis-elements located on the promoter region of the gamma-responsive genes, we have also found several cis-elements related to various signal transduction systems. We also analyzed the pleiotropic mutant ttg1-1, which has a dramatically altered physiological response to gamma-irradiation. By comparing the gene expression patterns of wild-type (Ler) and ttg1-1 mutant plants after gamma-irradiation, we identified various TTG1-regulated gamma-response genes. Analysis of the cis-elements in the promoter region of the gamma-responsive genes also revealed that the many transcription factors interacting with TTG1 protein (WD40 protein) are related to the gamma-responsive gene expression.
Collapse
Affiliation(s)
- Toshifumi Nagata
- National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
21
|
Yang T, Poovaiah BW. A calmodulin-binding/CGCG box DNA-binding protein family involved in multiple signaling pathways in plants. J Biol Chem 2002; 277:45049-58. [PMID: 12218065 DOI: 10.1074/jbc.m207941200] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We reported earlier that the tobacco early ethylene-responsive gene NtER1 encodes a calmodulin-binding protein (Yang, T., and Poovaiah, B. W. (2000) J. Biol. Chem. 275, 38467-38473). Here we demonstrate that there is one NtER1 homolog as well as five related genes in Arabidopsis. These six genes are rapidly and differentially induced by environmental signals such as temperature extremes, UVB, salt, and wounding; hormones such as ethylene and abscisic acid; and signal molecules such as methyl jasmonate, H(2)O(2), and salicylic acid. Hence, they were designated as AtSR1-6 (Arabidopsis thaliana signal-responsive genes). Ca(2+)/calmodulin binds to all AtSRs, and their calmodulin-binding regions are located on a conserved basic amphiphilic alpha-helical motif in the C terminus. AtSR1 targets the nucleus and specifically recognizes a novel 6-bp CGCG box (A/C/G)CGCG(G/T/C). The multiple CGCG cis-elements are found in promoters of genes such as those involved in ethylene signaling, abscisic acid signaling, and light signal perception. The DNA-binding domain in AtSR1 is located on the N-terminal 146 bp where all AtSR1-related proteins share high similarity but have no similarity to other known DNA-binding proteins. The calmodulin-binding nuclear proteins isolated from wounded leaves exhibit specific CGCG box DNA binding activities. These results suggest that the AtSR gene family encodes a family of calmodulin-binding/DNA-binding proteins involved in multiple signal transduction pathways in plants.
Collapse
Affiliation(s)
- Tianbao Yang
- Laboratory of Plant Molecular Biology and Physiology, Department of Horticulture, Washington State University, Pullman, Washington 99164-6414, USA
| | | |
Collapse
|
22
|
Yalamanchili RD, Stratmann JW. Ultraviolet-B activates components of the systemin signaling pathway in Lycopersicon peruvianum suspension-cultured cells. J Biol Chem 2002; 277:28424-30. [PMID: 12034744 DOI: 10.1074/jbc.m203844200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among the early responses of Lycopersicon peruvianum suspension-cultured cells to the polypeptide wound signal systemin are the alkalinization of the culture medium and the activation of a 48-kDa mitogen-activated protein kinase (MAPK). Here, we report that both responses are induced in the cells by exposure to ultraviolet-B (UV-B) radiation. Suramin, an inhibitor of systemin receptor function, strongly inhibited the UV-B-induced medium alkalinization and MAPK activity. The UV-B response was also reduced when cells were initially treated with systemin or the systemin antagonist Ala-17-systemin, which competitively inhibits binding of systemin to the systemin receptor. Cells that were initially treated with either UV-B or systemin exhibited a strongly reduced response to a subsequent elicitation with systemin. The desensitization was transient, reaching a maximum at 30-60 min after the initial treatment. Several hours later, depending on the initial UV-B dose or systemin concentration, the cells regained their initial responsiveness. When cells were irradiated with low doses of UV-B and subsequently treated with systemin, the UV-B response reached levels higher than the response without UV-B treatment. The data provide evidence for an involvement of the systemin receptor and/or systemin-responsive signaling elements in the UV-B response.
Collapse
Affiliation(s)
- Roopa Devi Yalamanchili
- Institution Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
23
|
Costet L, Fritig B, Kauffmann S. Scopoletin expression in elicitor-treated and tobacco mosaic virus-infected tobacco plants. PHYSIOLOGIA PLANTARUM 2002; 115:228-235. [PMID: 12060240 DOI: 10.1034/j.1399-3054.2002.1150208.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Localized acquired resistance (LAR) characterizes a narrow zone of living cells expressing strong defense responses and surrounding cells undergoing a hypersensitive response (HR). In Samsun NN tobacco plants, tissues undergoing tobacco mosaic virus-induced or elicitor-induced LAR exhibit a strong blue fluorescence under UV light. We have shown that scopoletin and its glucoside, scopolin, accounted for the fluorescence: (1) both compounds were identified after extraction and purification by thin layer and high performance liquid chromatography; (2) there was a strict correlation between the occurrence of fluorescence and accumulation of high amounts of scopoletin; and (3) infiltration of commercial scopoletin caused a similar fluorescence to that occurring in LAR tissues. There was a 20-fold increase in scopoletin levels in LAR tissues compared to tissues treated with a non-HR dose of elicitor, while PR1 protein accumulated in similar amounts in both types of tissues. Scopoletin was able to suppress the elicitor-induced HR only when co-infiltrated with very low HR-dose of elicitor. These two observations suggested that, although scopoletin alone would not be able to control the development of the HR through its known antioxidant activity, it may nevertheless participate to such function of LAR tissues in combination with other antioxidant molecules.
Collapse
Affiliation(s)
- Laurent Costet
- Institut de Biologie Moléculaire des Plantes du C.N.R.S., Université Louis Pasteur, 12 rue du Général Zimmer, F-67084 Strasbourg, France Present address of Laurent Costet: CIRAD-CA, Station de la Bretagne, Laboratoire de Phytopathologie, BP 20, F-97408 St Denis, France
| | | | | |
Collapse
|
24
|
Shapiro AD, Zhang C. The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. PLANT PHYSIOLOGY 2001; 127:1089-1101. [PMID: 11706189 DOI: 10.1104/pp.010096] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis plants containing the ndr1-1 mutation are incapable of mounting a hypersensitive response to bacteria carrying avrRpt2, but show an exaggerated cell death response to bacteria carrying avrB (Century et al., 1995). We show here that ndr1-1 plants are severely impaired in induction of systemic acquired resistance and PR1-driven transcription of a reporter gene in response to Pseudomonas syringae strains carrying avrRpt2 but not in response to P. syringae carrying avrB. The ndr1-1 mutation also impaired salicylic acid (SA) accumulation in response to treatments that produced reactive oxygen species (ROS) and impaired induction of systemic acquired resistance in response to in situ production of ROS. Hydrogen peroxide accumulated in wild-type Arabidopsis leaves beginning 4 to 7 h postinoculation with P. syringae carrying either avrRpt2 or avrB. In ndr1-1 plants, P. syringae carrying avrRpt2 elicited no detectable hydrogen peroxide production. Hydrogen peroxide production in response to bacteria carrying avrB was similar to that of Columbia in kinetics but of lesser intensity at early time points. These data are interpreted to indicate that NDR1 links ROS generation to SA production and that the phenotypic consequences of the ndr1-1 mutation are caused by a reduced ability to accumulate SA upon pathogen infection.
Collapse
Affiliation(s)
- A D Shapiro
- Delaware Agricultural Experiment Station, Department of Plant and Soil Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303, USA.
| | | |
Collapse
|
25
|
Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN. UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. THE NEW PHYTOLOGIST 2001; 151:121-131. [PMID: 33873370 DOI: 10.1046/j.1469-8137.2001.00151.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
UV-B, UV-A and blue light control a variety of aspects of plant development via distinct photoreceptors and signalling pathways. The known photoreceptors for UV-A/blue light are cryptochrome (cry)1 and cry2, and the phototropism photoreceptor, phototropin. Redox processes are important in cry and phototropin signal transduction. A specific photoreceptor for UV-B has not been identified and there appear to be several possible UV-B signalling pathways. We are investigating the UV and blue light regulation of transcription of the chalcone synthase gene (CHS) in Arabidopsis. Experiments with photoreceptor mutants show that distinct UV-A/blue (cry mediated) and UV-B photoreception systems control CHS expression. Experiments with an Arabidopsis cell suspension culture show that the UV-B and cry1 signalling pathways differ kinetically and pharmacologically. In contrast to some other UV-B responses, the UV-B induction of CHS does not appear to involve oxidative stress signalling. Promoter elements and candidate transcription factors that effect CHS induction have been identified. Interactions within a network of UV-B, cry and phytochrome signalling pathways regulate CHS expression. Synergistic interactions between the UV-B pathway and distinct UV-A and blue-light pathways maximize the response. In addition, specific phytochromes positively control the cry1 pathway via distinct potentiation and coaction effects, and negatively regulate the UV-B pathway.
Collapse
Affiliation(s)
- Gareth I Jenkins
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joanne C Long
- present address: Department of Botany, North Carolina State University, Box 7612, Raleigh, NC 27695-7612, USA
| | - Helena K Wade
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew R Shenton
- Plant Molecular Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tatiana N Bibikova
- present address: Biology Department, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
26
|
Boccalandro HE, Mazza CA, Mazzella MA, Casal JJ, Ballaré CL. Ultraviolet B radiation enhances a phytochrome-B-mediated photomorphogenic response in Arabidopsis. PLANT PHYSIOLOGY 2001; 126:780-8. [PMID: 11402206 PMCID: PMC111168 DOI: 10.1104/pp.126.2.780] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2000] [Revised: 01/10/2001] [Accepted: 03/01/2001] [Indexed: 05/18/2023]
Abstract
Ultraviolet B radiation (UV-B, 290-315 nm) can cause damage and induce photomorphogenic responses in plants. The mechanisms that mediate the photomorphogenic effects of UV-B are unclear. In etiolated Arabidopsis seedlings, a daily exposure to 2.5 h of UV-B enhanced the cotyledon opening response induced by a subsequent red light (R) pulse. An R pulse alone, 2.5 h of UV-B terminated with a far-red pulse, or 2.5 h of continuous R caused very little cotyledon opening. The enhancing effect of UV-B increased with fluence rate up to approximately 7.58 micromol m(-2) s(-1); at higher fluence rates the response to UV-B was greatly reduced. The phyA, phyA cry1, and cry1 cry2 mutants behaved like the wild type when exposed to UV-B followed by an R pulse. In contrast, phyB, phyB cry1, and phyB phyA mutants failed to open the cotyledons. Thus, phytochrome B was required for the cotyledon opening response to UV-B --> R treatments, whereas phytochrome A and cryptochromes 1 and 2 were not necessary under the conditions of our experiments. The enhancing effect of low doses of UV-B on cotyledon opening in uvr1 uvr2 and uvr1 uvr3 mutants, deficient in DNA repair, was similar to that found in the wild type, suggesting that this effect of UV-B was not elicited by signals derived from UV-B-induced DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts). We conclude that low doses of UV-B, perceived by a receptor system different from phytochromes, cryptochromes, or DNA, enhance a de-etiolation response that is induced by active phytochrome B.
Collapse
Affiliation(s)
- H E Boccalandro
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, C1417 DSE Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
27
|
Hernández JA, Talavera JM, Martínez-Gómez P, Dicenta F, Sevilla F. Response of antioxidative enzymes to plum pox virus in two apricot cultivars. PHYSIOLOGIA PLANTARUM 2001; 111:313-321. [PMID: 11240915 DOI: 10.1034/j.1399-3054.2001.1110308.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent evidence has indicated that activated oxygen species (AOS) may function as molecular signals in the induction of defence genes. In the present work, the response of antioxidative enzymes to the plum pox virus (PPV) was examined in two apricot (Prunus armeniaca L.) cultivars, which behaved differently against PPV infection. In the inoculated resistant cultivar (Goldrich), a decrease in catalase (CAT) as well as an increase in total superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR) activities were observed. Ascorbate peroxidase (APX), glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR) did not change significantly in relation to non-inoculated (control) plants. In the susceptible cultivar (Real Fino), inoculation with PPV brought about a decrease in CAT, SOD and GR, whereas a rise in APX, MDHAR and DHAR activities was found in comparison to non-inoculated (control) plants. Apricot leaves contain only CuZn-SOD isozymes, which responded differently to PPV depending on the cultivar. Goldrich leaves contained 6 SODs and both SOD 1 and SOD 2 increased in the inoculated plants. In leaves from Real Fino, 5 SODs were detected and only SOD 5 was increased in inoculated plants. The different behaviour of SODs (H2O2-generating enzymes) and APX (an H2O2-remover enzyme) in both cultivars suggests an important role for H2O2 in the response to PPV of the resistant cultivar, in which no change in APX activity was observed. This result also points to further studies in order to determine if an alternative H2O2-scavenging mechanism takes place in the resistant apricot cultivar exposed to PPV. On the other hand, the ability of the inoculated resistant cultivar to induce SOD 1 and SOD 2 as well as the important increase of DHAR seems to suggest a relationship between these activities and resistance to PPV. This is the first report about the effect of PPV infection on the antioxidative enzymes of apricot plants. It opens the way for the further studies, which are necessary for a better understanding of the role of antioxidative processes in viral infection by PPV in apricot plants.
Collapse
Affiliation(s)
- J. A. Hernández
- Departamento de Nutrición y Fisiología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Apartado 4195, E-30100 Murcia, Spain; Departamento de Mejora y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, CSIC, Apartado 4195, E-30100 Murcia, Spain
| | | | | | | | | |
Collapse
|
28
|
Irihimovitch V, Shapira M. Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem 2000; 275:16289-95. [PMID: 10821870 DOI: 10.1074/jbc.275.21.16289] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work showed a transient but dramatic arrest in the synthesis of Rubisco large subunit (LSU) upon transfer of Chlamydomonas reinhardtii cells from low light (LL) to high light (HL). Using dichlorofluorescin, a short-term increase in reactive oxygen species (ROS) was demonstrated, suggesting that their excessive formation could signal LSU down-regulation. A decrease in LSU synthesis occurred at LL in the presence of methyl viologen and was prevented at HL by ascorbate. Interfering with D1 function by mutations or by incubation with DCMU prevented the increase in ROS formation at HL and the concomitant down-regulation of LSU synthesis. If the electron transport was blocked further downstream, by mutation in the cytochrome b(6)/f or by incubation with 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, ROS formation increased, and LSU synthesis ceased. The elevation of ROS occurred concurrently with a change in the redox state of the glutathione pool, which shifted toward its oxidized form immediately after the transfer to HL and returned to its original value after 6 h. The decrease in the reduced/oxidized glutathione ratio at HL was prevented by ascorbate and could be induced at LL by methyl viologen. We suggest that excess ROS mediate a decrease in the reduced/oxidized glutathione ratio that in turn signals the translational arrest of the rbcL transcript.
Collapse
Affiliation(s)
- V Irihimovitch
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
29
|
Barka EA, Kalantari S, Makhlouf J, Arul J. Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2000; 48:667-671. [PMID: 10725131 DOI: 10.1021/jf9906174] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of a hormic dose of UV-C (254 nm) on changes in fruit firmness and cell wall-degrading enzyme (CWDE) activity was determined using tomato fruit. Throughout the storage period, a decrease in firmness was jointly observed with an increase of the CWDE (polygalacturonase, pectin methyl esterase, cellulase, xylanase, beta-D-galactosidase, and protease) activity for all treatments, suggesting the involvement of these enzymes in the ripening process. However, the enhancement in the activity of the CWDE was significantly less in fruit subjected to the hormic dose of UV-C. This reduction may explain why irradiated fruit were firmer than control and consequently may explain how UV-C could delay the ripening and senescence process. We suggest that the CWDE are one of the targets of the UV-C, and by this action, irradiation contributed to a delay of the cell wall degradation and consequently retarded softening of the tomato fruit tissues.
Collapse
Affiliation(s)
- E A Barka
- Department of Food Science and Nutrition and Horticultural Research Center, Laval University, Sainte Foy, Quebec, G1K 7P4 Canada.
| | | | | | | |
Collapse
|
30
|
Durner J, Wendehenne D, Klessig DF. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 1998; 95:10328-33. [PMID: 9707647 PMCID: PMC21508 DOI: 10.1073/pnas.95.17.10328] [Citation(s) in RCA: 743] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reactive oxygen species are believed to perform multiple roles during plant defense responses to microbial attack, acting in the initial defense and possibly as cellular signaling molecules. In animals, nitric oxide (NO) is an important redox-active signaling molecule. Here we show that infection of resistant, but not susceptible, tobacco with tobacco mosaic virus resulted in enhanced NO synthase (NOS) activity. Furthermore, administration of NO donors or recombinant mammalian NOS to tobacco plants or tobacco suspension cells triggered expression of the defense-related genes encoding pathogenesis-related 1 protein and phenylalanine ammonia lyase (PAL). These genes were also induced by cyclic GMP (cGMP) and cyclic ADP-ribose, two molecules that can serve as second messengers for NO signaling in mammals. Consistent with cGMP acting as a second messenger in tobacco, NO treatment induced dramatic and transient increases in endogenous cGMP levels. Furthermore, NO-induced activation of PAL was blocked by 6-anilino-5,8-quinolinedione and 1H-(1,2,4)-oxadiazole[4,3-a]quinoxalin-1-one, two inhibitors of guanylate cyclase. Although 6-anilino-5,8-quinolinedione fully blocked PAL activation, inhibition by 1H-(1,2,4)-oxadiazole[4, 3-a]quinoxalin-1-one was not entirely complete, suggesting the existence of cGMP-independent, as well as cGMP-dependent, NO signaling. We conclude that several critical players of animal NO signaling are also operative in plants.
Collapse
Affiliation(s)
- J Durner
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | |
Collapse
|
31
|
Chamnongpol S, Willekens H, Moeder W, Langebartels C, Sandermann H, Van Montagu M, Inzé D, Van Camp W. Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci U S A 1998; 95:5818-23. [PMID: 9576968 PMCID: PMC20463 DOI: 10.1073/pnas.95.10.5818] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/1998] [Indexed: 02/07/2023] Open
Abstract
Transgenic tobacco deficient in the H2O2-removing enzyme catalase (Cat1AS) was used as an inducible and noninvasive system to study the role of H2O2 as an activator of pathogenesis-related (PR) proteins in plants. Excess H2O2 in Cat1AS plants was generated by simply increasing light intensities. Sustained exposure of Cat1AS plants to excess H2O2 provoked tissue damage, stimulated salicylic acid and ethylene production, and induced the expression of acidic and basic PR proteins with a timing and magnitude similar to the hypersensitive response against pathogens. Salicylic acid production was biphasic, and the first peak of salicylic acid as well as the peak of ethylene occurred within the first hours of high light, which is long before the development of tissue necrosis. Under these conditions, accumulation of acidic PR proteins was also seen in upper leaves that were not exposed to high light, indicating systemic induction of expression. Short exposure of Cat1AS plants to excess H2O2 did not cause damage, induced local expression of acidic and basic PR proteins, and enhanced pathogen tolerance. However, the timing and magnitude of PR protein induction was in this case more similar to that in upper uninfected leaves than to that in hypersensitive-response leaves of pathogen-infected plants. Together, these data demonstrate that sublethal levels of H2O2 activate expression of acidic and basic PR proteins and lead to enhanced pathogen tolerance. However, rapid and strong activation of PR protein expression, as seen during the hypersensitive response, occurs only when excess H2O2 is accompanied by leaf necrosis.
Collapse
Affiliation(s)
- S Chamnongpol
- Laboratorium voor Genetica, Departement Genetica, Flanders Interuniversity Institute for Biotechnology, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bach M, Seitz HU. Elicitor-induced defence responses of a suspension-cultured woody plant (Larix decidua) and possible mechanisms of signal transduction. ACTA ACUST UNITED AC 1997. [DOI: 10.1139/b97-838] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of suspension-cultured larch cells (Larix decidua Mill.) with an elicitor derived from the cell wall of Fusarium oxysporum Schlecht. triggers very rapid defence responses like an oxidative burst and an increased calcium influx from the medium into the cell, all occurring within minutes after elicitation. These rapid responses are followed by a much slower set of changes like increased activities of phenylalanine ammonia-lyase and peroxidases and enhanced lignin biosynthesis. This paper describes both rapid and slow reactions of a cell culture derived from a woody plant to an elicitor from a facultative pathogen. Experiments concerning the transduction of the elicitor signal showed that the presence of calcium in the medium is indispensable for all elicitor responses of larch cells. It can be demonstrated that H2O2 is not a part of the signal chain. The importance of inositol phosphates and protein phosphorylation were studied using inhibitors. Neomycin, an inhibitor of the phosphoinositol pathway, blocked only the slower responses whereas staurosporine, an inhibitor of protein kinases, blocked both rapid and all the slower reactions. These results support the hypothesis that phosphorylation plays an important role even in very early stages of the signal transduction. Key words: elicitor, Fusarium oxysporum, H2O2, Larix decidua, lignin.
Collapse
|
33
|
Büttner M, Singh KB. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein. Proc Natl Acad Sci U S A 1997; 94:5961-6. [PMID: 9159183 PMCID: PMC20889 DOI: 10.1073/pnas.94.11.5961] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ocs elements are a group of promoter sequences required for the expression of both pathogen genes in infected plants and plant defense genes. Genes for ocs element binding factors (OBFs), belonging to a specific class of basic-region leucine zipper (bZIP) transcription factors, have been isolated in a number of plants. Using protein-protein interaction screening with OBF4 we have isolated AtEBP, an Arabidopsis protein that contains a novel DNA-binding domain, the AP2/EREBP domain. One class of proteins that contain this domain are the tobacco ethylene-responsive element binding proteins (EREBPs). The EREBPs bind the GCC box that confers ethylene responsiveness to a number of pathogenesis related (PR) gene promoters. AtEBP expression is inducible by exogenous ethylene in wild-type plants and AtEBP transcripts are increased in the ctr1-1 mutant, where ethylene-regulated pathways are constitutively active. Electrophoretic mobility-shift assay and DNase I footprint analysis revealed that AtEBP can specifically bind to the GCC box. Interestingly, the highest level of AtEBP expression was detected in callus tissue, where ocs elements are very active. Synergistic effects of the GCC box with ocs elements or the related G-box sequence have been previously observed, for example, in the ethylene-induced expression of a PR gene promoter. Our results suggest that cross-coupling between EREBP and bZIP transcription factors occurs and may therefore be important in regulating gene expression during the plant defense response.
Collapse
Affiliation(s)
- M Büttner
- Department of Molecular, Cell, and Developmental Biology, University of California, Box 951606, Los Angeles, CA 90095-1606, USA
| | | |
Collapse
|