1
|
van Haaren MJH, Steller LB, Vastert SJ, Calis JJA, van Loosdregt J. Get Spliced: Uniting Alternative Splicing and Arthritis. Int J Mol Sci 2024; 25:8123. [PMID: 39125692 PMCID: PMC11311815 DOI: 10.3390/ijms25158123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Immune responses demand the rapid and precise regulation of gene protein expression. Splicing is a crucial step in this process; ~95% of protein-coding gene transcripts are spliced during mRNA maturation. Alternative splicing allows for distinct functional regulation, as it can affect transcript degradation and can lead to alternative functional protein isoforms. There is increasing evidence that splicing can directly regulate immune responses. For several genes, immune cells display dramatic changes in isoform-level transcript expression patterns upon activation. Recent advances in long-read RNA sequencing assays have enabled an unbiased and complete description of transcript isoform expression patterns. With an increasing amount of cell types and conditions that have been analyzed with such assays, thousands of novel transcript isoforms have been identified. Alternative splicing has been associated with autoimmune diseases, including arthritis. Here, GWASs revealed that SNPs associated with arthritis are enriched in splice sites. In this review, we will discuss how alternative splicing is involved in immune responses and how the dysregulation of alternative splicing can contribute to arthritis pathogenesis. In addition, we will discuss the therapeutic potential of modulating alternative splicing, which includes examples of spliceform-based biomarkers for disease severity or disease subtype, splicing manipulation using antisense oligonucleotides, and the targeting of specific immune-related spliceforms using antibodies.
Collapse
Affiliation(s)
- Maurice J. H. van Haaren
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Levina Bertina Steller
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Pediatric Rheumatology and Immunology, Wilhelmina Children’s Hospital, 3584 CX Utrecht, The Netherlands
| | - Jorg J. A. Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
2
|
Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23137071. [PMID: 35806074 PMCID: PMC9267012 DOI: 10.3390/ijms23137071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive angiogenesis is a characteristic feature in the synovial tissue of rheumatoid arthritis (RA) from a very early stage of the disease onward and constitutes a crucial event for the development of the proliferative synovium. This process is markedly intensified in patients with prolonged disease duration, high disease activity, disease severity, and significant inflammatory cell infiltration. Angiogenesis is therefore an interesting target for the development of new therapeutic approaches as well as disease monitoring strategies in RA. To this end, nuclear imaging modalities represent valuable non-invasive tools that can selectively target molecular markers of angiogenesis and accurately and quantitatively track molecular changes in multiple joints simultaneously. This systematic review summarizes the imaging markers used for single photon emission computed tomography (SPECT) and/or positron emission tomography (PET) approaches, targeting pathways and mediators involved in synovial neo-angiogenesis in RA.
Collapse
|
3
|
Bhatnagar S, Khera E, Liao J, Eniola V, Hu Y, Smith DE, Thurber GM. Oral and Subcutaneous Administration of a Near-Infrared Fluorescent Molecular Imaging Agent Detects Inflammation in a Mouse Model of Rheumatoid Arthritis. Sci Rep 2019; 9:4661. [PMID: 30858419 PMCID: PMC6411963 DOI: 10.1038/s41598-019-38548-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease that causes irreversible damage to the joints. However, effective drugs exist that can stop disease progression, leading to intense interest in early detection and treatment monitoring to improve patient outcomes. Imaging approaches have the potential for early detection, but current methods lack sensitivity and/or are time-consuming and expensive. We examined potential routes for self-administration of molecular imaging agents in the form of subcutaneous and oral delivery of an integrin binding near-infrared (NIR) fluorescent imaging agent in an animal model of RA with the long-term goal of increasing safety and patient compliance for screening. NIR imaging has relatively low cost, uses non-ionizing radiation, and provides minimally invasive spatial and molecular information. This proof-of-principle study shows significant uptake of an IRDye800CW agent in inflamed joints of a collagen antibody induced arthritis (CAIA) mouse model compared to healthy joints, irrespective of the method of administration. The imaging results were extrapolated to clinical depths in silico using a 3D COMSOL model of NIR fluorescence imaging in a human hand to examine imaging feasability. With target to background concentration ratios greater than 5.5, which are achieved in the mouse model, these probes have the potential to identify arthritic joints following oral delivery at clinically relevant depths.
Collapse
Affiliation(s)
- Sumit Bhatnagar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Eshita Khera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jianshan Liao
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Victoria Eniola
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| | - David E Smith
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
4
|
Abstract
During cancer progression, the extracellular matrix (ECM) undergoes dramatic changes, which promote cancer cell migration and invasion. In the remodeled tumor ECM, fibronectin (FN) level is upregulated to assist tumor growth, progression, and invasion. FN serves as a central organizer of ECM molecules and mediates the crosstalk between the tumor microenvironment and cancer cells. Its upregulation is correlated with angiogenesis, cancer progression, metastasis, and drug resistance. A number of FN-targeting ligands have been developed for cancer imaging and therapy. Thus far, FN-targeting imaging agents have been tested for nuclear imaging, MRI, and fluorescence imaging, for tumor detection and localization. FN-targeting therapeutics, including nuclear medicine, chemotherapy drugs, cytokines, and photothermal moieties, were also developed in cancer therapy. Because of the prevalence of FN overexpression in cancer, FN targeting imaging agents and therapeutics have the promise of broad applications in the diagnosis, treatment, and image-guided interventions of many types of cancers. This review will summarize current understanding on the role of FN in cancer, discuss the design and development of FN-targeting agents, and highlight the applications of these FN-targeting agents in cancer imaging and therapy.
Collapse
Affiliation(s)
- Zheng Han
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Reimann S, Schneider T, Welker P, Neumann F, Licha K, Schulze-Tanzil G, Wagermaier W, Fratzl P, Haag R. Dendritic polyglycerol anions for the selective targeting of native and inflamed articular cartilage. J Mater Chem B 2017; 5:4754-4767. [DOI: 10.1039/c7tb00618g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dye-conjugated polyanions show high affinities toward native and inflamed cartilage dependent on the anionic moiety and the condition of the tissue.
Collapse
Affiliation(s)
- Sabine Reimann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Tobias Schneider
- Institute of Anatomy
- General Hospital Nuremberg
- Paracelsus Medical University
- 90419 Nuremberg
- Germany
| | - Pia Welker
- Institute of Anatomy and Cell Biology Charité Universitätsmedizin Berlin
- 10115 Berlin
- Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Gundula Schulze-Tanzil
- Institute of Anatomy
- General Hospital Nuremberg
- Paracelsus Medical University
- 90419 Nuremberg
- Germany
| | - Wolfgang Wagermaier
- Max Planck Institute of Colloids and Interfaces
- Department of Biomaterials
- 14424 Potsdam
- Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces
- Department of Biomaterials
- 14424 Potsdam
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- 14195 Berlin
- Germany
| |
Collapse
|
6
|
Liu M, Xie M, Jiang S, Liu G, Li L, Liu D, Yang X. A novel bispecific antibody targeting tumor necrosis factor α and ED-B fibronectin effectively inhibits the progression of established collagen-induce arthritis. J Biotechnol 2014; 186:1-12. [PMID: 24992210 DOI: 10.1016/j.jbiotec.2014.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 02/01/2023]
|
7
|
Liu MY, Hu XP, Xie M, Jiang SJ, Li LJ, Liu DX, Yang XS. Secretory expression of a bispecific antibody targeting tumor necrosis factor and ED-B fibronectin in Pichia pastoris and its functional analysis. Biotechnol Lett 2014; 36:2425-31. [PMID: 25129049 DOI: 10.1007/s10529-014-1630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
Specific targeting of tumor necrosis factor (TNF)-α antagonist to the inflamed site could increase its efficacy and reduce side-effects. Here, we constructed a bispecific diabody (BsDb) that targets TNF-α and ED-B-containing fibronectin, a fibronectin isoform specifically expressed in the pannus of the inflamed synovium in rheumatoid arthritis. BsDb was secreted from Pichia pastoris as functional protein and was purified to homogeneity. BsDb could simultaneously bind to human TNF-α and B-FN and neutralize TNF-α action. Additionally, BsDb showed a significant gain both in the antigen-binding affinity and in TNF-α-neutralizing ability as compared to its original antibodies, L19 and anti-TNF-α scFv, which were produced in E. coli. BsDb was constructed and was endowed with enhanced bioactivities and improved production processing. Therefore, it holds great potential for in vivo applications.
Collapse
Affiliation(s)
- Meng-yuan Liu
- Center for Infection and Immunity Research, School of Life Sciences, Hubei University, Youyi Road 368, Wuhan, 430062, China,
| | | | | | | | | | | | | |
Collapse
|
8
|
Licha K, Welker P, Weinhart M, Wegner N, Kern S, Reichert S, Gemeinhardt I, Weissbach C, Ebert B, Haag R, Schirner M. Fluorescence imaging with multifunctional polyglycerol sulfates: novel polymeric near-IR probes targeting inflammation. Bioconjug Chem 2011; 22:2453-60. [PMID: 22092336 DOI: 10.1021/bc2002727] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We present a highly selective approach for the targeting of inflammation with a multivalent polymeric probe. Dendritic polyglycerol was employed to synthesize a polyanionic macromolecular conjugate with a near-infrared fluorescent dye related to Indocyanine Green (ICG). On the basis of the dense assembly of sulfate groups which were generated from the polyol core, the resulting polyglycerol sulfate (molecular weight 12 kD with ~70 sulfate groups) targets factors of inflammation (IC(50) of 3-6 nM for inhibition of L-selectin binding) and is specifically transported into inflammatory cells. The in vivo accumulation studied by near-IR fluorescence imaging in an animal model of rheumatoid arthritis demonstrated fast and selective uptake which enabled the differentiation of diseased joints (score 1-3) with a 3.5-fold higher fluorescence level and a signal maximum at 60 min post injection. Localization in tissues using fluorescence histology showed that the conjugates are deposited in the inflammatory infiltrate in the synovial membrane, whereas nonsulfated control was not detected in association with disease. Hence, this type of polymeric imaging probe is an alternative to current bioconjugates and provides future options for targeted imaging and drug delivery.
Collapse
Affiliation(s)
- Kai Licha
- mivenion GmbH, Robert-Koch-Platz 4, 10115 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ventura E, Balza E, Borsi L, Tutolo G, Carnemolla B, Castellani P, Zardi L. Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report. BMC Biotechnol 2011; 11:104. [PMID: 22074550 PMCID: PMC3226451 DOI: 10.1186/1472-6750-11-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/10/2011] [Indexed: 12/31/2022] Open
Abstract
Background Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects. Results Using uteroglobin (UG), a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII) and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN), which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA) mouse model. Conclusions The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.
Collapse
Affiliation(s)
- Elisa Ventura
- Laboratory of Therapeutic Recombinant Proteins, Centro Biotecnologie Avanzate, Largo Rosanna Benzi, 1016132 Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen H, Cui S, Tu Z, Ji J, Zhang J, Gu Y. Characterization of CdHgTe/CdS QDs for Near Infrared Fluorescence Imaging of Spinal Column in a Mouse Model. Photochem Photobiol 2010; 87:72-81. [DOI: 10.1111/j.1751-1097.2010.00828.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Choi HS, Frangioni JV. Nanoparticles for Biomedical Imaging: Fundamentals of Clinical Translation. Mol Imaging 2010. [DOI: 10.2310/7290.2010.00031] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Hak Soo Choi
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| | - John V. Frangioni
- From the Division of Hematology/Oncology, Department of Medicine, and Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|