1
|
Zheng W, Lu X, Chen G, Shen Y, Huang X, Peng J, Wang J, Yin Y, Song W, Xie M, Yu S, Chen L. The osteoclastic activity in apical distal region of molar mesial roots affects orthodontic tooth movement and root resorption in rats. Int J Oral Sci 2024; 16:19. [PMID: 38418457 PMCID: PMC10901898 DOI: 10.1038/s41368-024-00284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/21/2024] [Indexed: 03/01/2024] Open
Abstract
The utilization of optimal orthodontic force is crucial to prevent undesirable side effects and ensure efficient tooth movement during orthodontic treatment. However, the sensitivity of existing detection techniques is not sufficient, and the criteria for evaluating optimal force have not been yet established. Here, by employing 3D finite element analysis methodology, we found that the apical distal region (A-D region) of mesial roots is particularly sensitive to orthodontic force in rats. Tartrate-resistant acidic phosphatase (TRAP)-positive osteoclasts began accumulating in the A-D region under the force of 40 grams (g), leading to alveolar bone resorption and tooth movement. When the force reached 80 g, TRAP-positive osteoclasts started appearing on the root surface in the A-D region. Additionally, micro-computed tomography revealed a significant root resorption at 80 g. Notably, the A-D region was identified as a major contributor to whole root resorption. It was determined that 40 g is the minimum effective force for tooth movement with minimal side effects according to the analysis of tooth movement, inclination, and hyalinization. These findings suggest that the A-D region with its changes on the root surface is an important consideration and sensitive indicator when evaluating orthodontic forces for a rat model. Collectively, our investigations into this region would aid in offering valuable implications for preventing and minimizing root resorption during patients' orthodontic treatment.
Collapse
Affiliation(s)
- Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Stomatology, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
2
|
Kloukos D, Mavrogonatou E, Kletsas D, Makras P, Koukos G, Stavropoulos A, Katsaros C. Bone turnover markers in gingival crevicular fluid and blood serum of patients with fixed orthodontic appliances. Eur J Orthod 2021; 44:412-419. [PMID: 34878106 DOI: 10.1093/ejo/cjab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Bone remodelling can be followed through the bone turnover markers (BTMs). Aim of the present study was to record the fluctuation of an osteoclastic and an osteoblastic BTM [C-terminal telopeptide of type I collagen (CTX) and N-terminal pro-peptide of type I pro-collagen (PINP), respectively] in both the gingival crevicular fluid (GCF) and the serum of orthodontic patients before and after the initial application of orthodontic forces. MATERIALS AND METHODS Twenty-one Caucasian patients were prospectively evaluated. GCF and blood samples were collected in order to measure the selected biomarkers by ELISA at three time-points: exactly before, 5 days, and 14 days after bonding of the appliances. Standardized sample handling and patient preparation procedures were adopted in order to reduce pre-analytical variability. RESULTS GCF and serum CTX levels were found to be independent of age, although higher in the serum of female subjects. PINP levels were found higher in the serum of patients ≥25 years old, as well as in the GCF of males. A positive correlation between serum and GCF baseline PINP levels was observed. LIMITATIONS The effect of orthodontic treatment on bone remodelling might not be absolutely representative of the local bone microenvironment as the levels of the specific BTMs where measured within the GCF of the lower front teeth. CONCLUSIONS This is the first time PINP and CTX have been evaluated in the GCF and serum of orthodontic patients with fixed appliances. No statistically significant alterations of CTX and PINP levels in the GCF and the serum of patients were recorded over time during the initial stages of orthodontic treatment.
Collapse
Affiliation(s)
- Dimitrios Kloukos
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Switzerland.,Department of Orthodontics and Dentofacial Orthopedics, 251 Hellenic Air Force & VA General Hospital, Athens, Greece.,Department of Periodontology, Faculty of Odontology, Malmö University, Sweden
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Polyzois Makras
- Department of Endocrinology and Diabetes, 251 Hellenic Air Force & VA General Hospital, Athens, Greece.,Department of Medical Research, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - George Koukos
- Department of Periodontology, 251 Hellenic Air Force & VA General Hospital, Athens, Greece
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Sweden.,Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Switzerland
| |
Collapse
|
3
|
Huang GY, Choi SH, Jung HD, Kim HS, Hwang CJ, Lee KJ. Tissue-specific biomarkers in gingival crevicular fluid are correlated with external root resorption caused by constant mechanical load: an in vivo study. Clin Oral Investig 2021; 25:6321-6333. [PMID: 33822289 DOI: 10.1007/s00784-021-03932-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study investigated the association of changes in cementum protein-1 (CEMP-1), dentine phosphoprotein (DPP), and c-terminal cross-linked telopeptide of type I collagen (CTX-I) levels in human gingival crevicular fluid (GCF) under constant load with external root resorption volume and amount of tooth movement. MATERIALS AND METHODS In total, 11 healthy adult patients (mean age, 23.5 years [range, 18.3-37.7]; four men and seven women) were enrolled. GCF samples were obtained from premolars at T0, T1 (1 day), T2 (1 week), T3 (2 weeks), T4 (4 weeks), and T5 (8 weeks) under constant 100-gm buccal tipping force. Opposite premolars were used as controls. Teeth were extracted at T5, followed by quantification of external root resorption volume and histological analysis. RESULTS In the test group, T5/T0 ratios of CEMP-1 and DPP levels, differential CEMP-1 levels between T5 and T0, and differential DPP levels between T2 and T0 correlated positively with root resorption volume (r = 0.734, 0.730, 0.627, and 0.612, respectively, all p < 0.05). CEMP-1 levels at T0 and T3 correlated negatively with root resorption volume (r = -0.603 and -0.706; all p < 0.05). CTX-I levels at T5 correlated positively with the amount of tooth movement (r = 0.848, p < 0.01). CONCLUSIONS Alterations in CEMP-1 and DPP levels in human GCF at specific timepoints during orthodontic treatment may be associated with different degrees of external root resorption. CLINICAL RELEVANCE This study demonstrates that changes in the levels of tissue-specific biomarkers in GCF may facilitate early detection of external root resorption during orthodontic tooth movement.
Collapse
Affiliation(s)
- Gui-Yue Huang
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Hwi-Dong Jung
- Department of Oral & Maxillofacial Surgery, College of Dentistry, Yonsei University, 50-1 Yonsei-Ro, Seodeamun-Gu, Seoul, 03722, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Kee-Joon Lee
- Department of Orthodontics, The Institute of Craniofacial Deformity, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|