1
|
Vuori I, Gaiani G, Arsın S, Delbaje E, Järn J, Snårbacka R, Couëdelo A, Murukesan G, Wahlsten M, Jokela J, Shishido TK, Fewer DP. Direct Evidence of Microbial Sunscreen Production by Scum-Forming Cyanobacteria in the Baltic Sea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70056. [PMID: 39821521 PMCID: PMC11738650 DOI: 10.1111/1758-2229.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/19/2025]
Abstract
Mycosporine-like amino acids are water-soluble secondary metabolites that protect photosynthetic microorganisms from ultraviolet radiation. Here, we present direct evidence for the production of these compounds in surface scums of cyanobacteria along the Baltic Sea coast. We collected 59 environmental samples from the southern coast of Finland during the summers of 2021 and 2022 and analysed them using high-resolution liquid chromatography-mass spectrometry. Our results revealed the presence of microbial sunscreens in nearly all surface scum samples. Mycosporine-like amino acids are synthesised through the coordinated action of four biosynthetic enzymes encoded in a compact biosynthetic pathway. Bioinformatics analysis of the mysB biosynthetic gene from a surface scum indicated that the cyanobacteria responsible for production belonged to the Anabaena/Dolichospermum/Aphanizomenon species complex. We mapped the distribution of biosynthetic enzymes onto a phylogenomic tree, utilising 120 bacterial single-copy conserved genes from 101 draft or complete genomes within the species complex. This analysis showed that 48% of identified species possess the ability to produce these compounds, with biosynthetic pathways being most common in Dolichospermum and Aphanizomenon strains. We detected the production of porphyra-334 and shinorine, two widely reported family members, in Dolichospermum strains isolated from the Gulf of Finland's surface layer. The estimated content of porphyra-334 in Dolichospermum sp. UHCC 0684 was 7.4 mg per gram dry weight. Our results suggest that bloom-forming cyanobacteria could be a potential source of these compounds for cosmetic and biotechnological applications and may play a significant role in cyanobacterial bloom formation.
Collapse
Affiliation(s)
- Inkeri Vuori
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Greta Gaiani
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Sıla Arsın
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Endrews Delbaje
- Universidade de São PauloCenter for Nuclear Energy in AgriculturePiracicabaBrazil
| | - Julia Järn
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | | | - Annaël Couëdelo
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | | | - Matti Wahlsten
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | - Jouni Jokela
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| | | | - David P. Fewer
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
2
|
Peng J, Guo F, Liu S, Fang H, Xu Z, Wang T. Recent Advances and Future Prospects of Mycosporine-like Amino Acids. Molecules 2023; 28:5588. [PMID: 37513460 PMCID: PMC10384724 DOI: 10.3390/molecules28145588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Mycosporine-like amino acids (MAAs) are a class of water-soluble active substances produced by various aquatic organisms. However, due to the limitations of low accumulation of MAAs in organisms, the cumbersome extraction process, difficult identification, and high cost, MAAs have not yet been widely used in human life. Recently, there has been an emergence of heterologous synthesis for MAAs, making increasing yield the key to the quantification and application of MAAs. This review summarizes the latest research progress of MAAs, including: (1) introducing the biodistribution of MAAs and the content differences among different species to provide a reference for the selection of research subjects; (2) elaborating the species and molecular information of MAAs; (3) dissecting the synthesis mechanism and sorting out the synthesis pathways of various MAAs; (4) summarizing the methods of extraction and identification, summarizing the advantages and disadvantages, and providing a reference for the optimization of extraction protocols; (5) examining the heterologous synthesis method; and (6) summarizing the physiological functions of MAAs. This paper comprehensively updates the latest research status of MAAs and the various problems that need to be addressed, especially emphasizing the potential advantages of heterologous synthesis in the future production of MAAs.
Collapse
Affiliation(s)
- Jiahui Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Fangyu Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Sishi Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Haiyan Fang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| |
Collapse
|
3
|
Dabravolski SA, Isayenkov SV. Metabolites Facilitating Adaptation of Desert Cyanobacteria to Extremely Arid Environments. PLANTS (BASEL, SWITZERLAND) 2022; 11:3225. [PMID: 36501264 PMCID: PMC9736550 DOI: 10.3390/plants11233225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desert is one of the harshest environments on the planet, characterized by exposure to daily fluctuations of extreme conditions (such as high temperature, low nitrogen, low water, high salt, etc.). However, some cyanobacteria are able to live and flourish in such conditions, form communities, and facilitate survival of other organisms. Therefore, to ensure survival, desert cyanobacteria must develop sophisticated and comprehensive adaptation strategies to enhance their tolerance to multiple simultaneous stresses. In this review, we discuss the metabolic pathways used by desert cyanobacteria to adapt to extreme arid conditions. In particular, we focus on the extracellular polysaccharides and compatible solutes biosynthesis pathways and their evolution and special features. We also discuss the role of desert cyanobacteria in the improvement of soil properties and their ecological and environmental impact on soil communities. Finally, we summarize recent achievements in the application of desert cyanobacteria to prevent soil erosion and desertification.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Osipovskogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
4
|
Sakamoto T, Wei Y, Yuasa K, Nishiyama Y. Recovery of photosynthesis after long-term storage in the terrestrial cyanobacterium <i>Nostoc commune</i>. J GEN APPL MICROBIOL 2022; 68:169-174. [DOI: 10.2323/jgam.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Toshio Sakamoto
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University
| | - Yang Wei
- Division of Biological Sciences, Graduate School of Natural Science and Technology
| | - Koki Yuasa
- Present address: Fisheries Technology Institute, Japan Fisheries Research and Education Agency
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
5
|
Wei Y, Nishiuchi T, Sakamoto T. Characterization of mycosporine-like amino acids in the edible cyanobacterium Nostoc commune (Di Pi Cai) from China. J GEN APPL MICROBIOL 2021; 67:260-264. [PMID: 34349076 DOI: 10.2323/jgam.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The terrestrial cyanobacterium Nostoc commune has a cosmopolitan distribution. It is edible, and dry thalli are sold as a food in China under the name of Di Pi Cai. The pigment composition and the genotypes were characterized to identify the cyanobacterium Di Pi Cai from China as N. commune. Myxol glycosides and ketocarotenoids were detected, as expected in Nostoc sp., but β-carotene and hydroxylated carotenoids were not detected. Nostoc-756, mycosporine-2-(4-deoxygadusoyl-ornitine), was found to be a main mycosporine-like amino acid, which indicates that Di Pi Cai belongs to the N. commune chemotype C. However, the 16S rRNA gene and the petH gene encoding ferredoxin-NADP+ oxidoreductase of Di Pi Cai did not exactly match those of genotype C found in Japan. These results suggest the unique molecular genetic features of Di Pi Cai and the global diversity of N. commune.
Collapse
Affiliation(s)
- Yang Wei
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | - Takumi Nishiuchi
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University.,Division of Functional Genomics, Advanced Science Research Center, Kanazawa University
| | - Toshio Sakamoto
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Kanazawa University.,School of Biological Science and Technology, College of Science and Engineering, Kanazawa University
| |
Collapse
|
6
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|