1
|
Desmarais M, Fraraccio S, Dolinova I, Ridl J, Strnad H, Kubatova H, Sevcu A, Suman J, Strejcek M, Uhlik O. Genomic analysis of Acinetobacter pittii CEP14 reveals its extensive biodegradation capabilities, including cometabolic degradation of cis-1,2-dichloroethene. Antonie Van Leeuwenhoek 2022; 115:1041-1057. [PMID: 35701646 DOI: 10.1007/s10482-022-01752-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/27/2022]
Abstract
Halogenated organic compounds are naturally occurring in subsurface environments; however, accumulation of the degradative intermediate cis-1,2-dichloroethene (cDCE) at soil and groundwater sites contaminated with xenobiotic chlorinated ethenes is a global environmental and public health issue. Identifying microorganisms capable of cDCE degradation in these environments is of interest because of their potential application to bioremediation techniques. In this study, we sequenced, assembled, and analyzed the complete genome of Acinetobacter pittii CEP14, a strain isolated from chloroethene-contaminated groundwater, that has demonstrated the ability for aerobic cometabolic degradation of cDCE in the presence of n-hexane, phenol, and toluene. The A. pittii CEP14 genome consists of a 3.93 Mbp-long chromosome (GenBank accession no. CP084921) with a GC content of 38.9% and three plasmids (GenBank accession no. CP084922, CP084923, and CP084924). Gene function was assigned to 83.4% of the 3,930 coding DNA sequences. Functional annotation of the genome revealed that the CEP14 strain possessed all genetic elements to mediate the degradation of a range of aliphatic and aromatic compounds, including n-hexane and phenol. In addition, it harbors gene clusters involved in cytosol detoxification and oxidative stress resistance, which could play a role in the mitigation of toxic chemical intermediates that can arise during the degradation of cDCE. Gene clusters for heavy metal and antibiotic resistance were also identified in the genome of CEP14. These results suggest that CEP14 may be a versatile degrader of xenobiotic compounds and well-adapted to polluted environments, where a combination of heavy metal and organic compound pollution is often found.
Collapse
Affiliation(s)
- Miguel Desmarais
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Serena Fraraccio
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Iva Dolinova
- Department of Applied Biology, Advanced Technologies and Innovation Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Institute for Nanomaterials, Technical University of Liberec, Liberec, Czech Republic
- Department of Genetics and Molecular Diagnostics, Regional Hospital Liberec, Liberec, Czech Republic
| | - Jakub Ridl
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Strnad
- Department of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kubatova
- State Office for Nuclear Safety, Prague, Czech Republic
| | - Alena Sevcu
- Department of Applied Biology, Advanced Technologies and Innovation Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Institute for Nanomaterials, Technical University of Liberec, Liberec, Czech Republic
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Michal Strejcek
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague 6, Prague, Czech Republic.
| |
Collapse
|
2
|
Jacquin J, Callac N, Cheng J, Giraud C, Gorand Y, Denoual C, Pujo-Pay M, Conan P, Meistertzheim AL, Barbe V, Bruzaud S, Ghiglione JF. Microbial Diversity and Activity During the Biodegradation in Seawater of Various Substitutes to Conventional Plastic Cotton Swab Sticks. Front Microbiol 2021; 12:604395. [PMID: 34335485 PMCID: PMC8321090 DOI: 10.3389/fmicb.2021.604395] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
The European Parliament recently approved a new law banning single-use plastic items for 2021 such as plastic plates, cutlery, straws, cotton swabs, and balloon sticks. Transition to a bioeconomy involves the substitution of these banned products with biodegradable materials. Several materials such as polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), poly(butylene succinate) (PBS), polyhydroxybutyrate-valerate (PHBV), Bioplast, and Mater-Bi could be good candidates to substitute cotton swabs, but their biodegradability needs to be tested under marine conditions. In this study, we described the microbial life growing on these materials, and we evaluated their biodegradability in seawater, compared with controls made of non-biodegradable polypropylene (PP) or biodegradable cellulose. During the first 40 days in seawater, we detected clear changes in bacterial diversity (Illumina sequencing of 16S rRNA gene) and heterotrophic activity (incorporation of 3H-leucine) that coincided with the classic succession of initial colonization, growth, and maturation phases of a biofilm. Biodegradability of the cotton swab sticks was then tested during another 94 days under strict diet conditions with the different plastics as sole carbon source. The drastic decrease of the bacterial activity on PP, PLA, and PBS suggested no bacterial attack of these materials, whereas the bacterial activity in PBAT, Bioplast, Mater-Bi, and PHBV presented similar responses to the cellulose positive control. Interestingly, the different bacterial diversity trends observed for biodegradable vs. non-biodegradable plastics allowed to describe potential new candidates involved in the degradation of these materials under marine conditions. This better understanding of the bacterial diversity and activity dynamics during the colonization and biodegradation processes contributes to an expanding baseline to understand plastic biodegradation in marine conditions and provide a foundation for further decisions on the replacement of the banned single-used plastics.
Collapse
Affiliation(s)
- Justine Jacquin
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,Innovation Plasturgie et Composites, Biopole Clermont Limagne, Saint-Beauzire, France
| | - Nolwenn Callac
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Jingguang Cheng
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | - Carolane Giraud
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France.,CNRS, UMR 9220 ENTROPIE, Ifremer (LEAD-NC), IRD, Univ Nouvelle-Calédonie, Univ La Réunion, Nouméa, New Caledonia
| | - Yonko Gorand
- Plateforme EnRMAT, Laboratoire PROMES, Rembla de la Thermodynamique, Perpignan, France
| | - Clement Denoual
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Mireille Pujo-Pay
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | - Pascal Conan
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| | | | - Valerie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- UMR CNRS 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Jean-François Ghiglione
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique de Banyuls, Sorbonne Université, Paris, France
| |
Collapse
|