1
|
Kawashima H, Aono Y, Watanabe Y, Waddington JL, Saigusa T. In vivo microdialysis reveals that blockade of accumbal orexin OX 2 but not OX 1 receptors enhances dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Neurosci 2022; 55:733-745. [PMID: 34989064 DOI: 10.1111/ejn.15593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/15/2021] [Accepted: 12/31/2021] [Indexed: 11/27/2022]
Abstract
The nucleus accumbens contains orexinergic neural inputs and orexin OX1 -and OX2 -receptors. Behavioural studies suggest that accumbal orexin receptors modulate accumbal dopaminergic activity-dependent locomotion in rats. We studied the effects of intra-accumbal injection of orexin receptor ligands on accumbal extracellular dopamine levels in freely moving rats, using in vivo microdialysis, and analysed the roles of OX1 - and OX2 -receptors in the regulation of basal accumbal dopamine efflux. The orexin receptor ligands were applied intra-accumbally though a microinjection needle attached with a dialysis probe. Neither the non-selective OX1 - and OX2 -receptor agonist orexin-A nor the preferential OX2 -receptor agonist orexin-B (500.0 pg and 5.0 ng) altered accumbal dopamine levels. The non-selective OX1 - and OX2 -receptor antagonist MK-4305 (suvorexant, 500.0 pg, 2.5 and 5.0 ng) enhanced dopamine efflux. A 2-h tetrodotoxin infusion into nucleus accumbens through the probe or co-administration of orexin-A (500.0 pg) strongly inhibited MK-4305 (5.0 ng)-induced accumbal dopamine efflux. The selective OX2 -receptor antagonist EMPA (90.0 and 900.0 pg, 9.0 ng) increased dopamine efflux. Intra-accumbal infusion of tetrodotoxin abolished EMPA (9.0 ng)-induced dopamine efflux. The selective OX1 -receptor antagonist SB-334867 (10.0 and 20.0 ng) failed to alter dopamine efflux. Co-administration of orexin-B (500.0 pg) inhibited both EMPA (9.0 ng)- and MK-4305 (5.0 ng)-induced dopamine efflux. Intraperitoneal injection of MK-4305 (10.0 mg/kg) did not affect accumbal dopamine efflux. The present study provides in vivo neuropharmacological evidence that accumbal OX2 - but not OX1 -receptors exert inhibitory regulation of basal accumbal dopamine efflux and that blockade of accumbal OX2 -receptors enhances dopamine efflux in nucleus accumbens of freely moving rats.
Collapse
Affiliation(s)
- Hiroki Kawashima
- Nihon University Graduate School of Dentistry at Matsudo, Oral Molecular Pharmacology, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yuriko Watanabe
- Department of Oral surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, St. Stephen's Green, Dublin 2, Ireland
| | - Tadashi Saigusa
- Nihon University Graduate School of Dentistry at Matsudo, Oral Molecular Pharmacology, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba, Japan.,Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| |
Collapse
|
2
|
Network Pharmacology-Based Study of the Underlying Mechanisms of Huangqi Sijunzi Decoction for Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6480381. [PMID: 34650613 PMCID: PMC8510793 DOI: 10.1155/2021/6480381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/22/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022]
Abstract
Background Huangqi Sijunzi decoction (HQSJZD) is a commonly used conventional Chinese herbal medicine prescription for invigorating Qi, tonifying Yang, and removing dampness. Modern pharmacology and clinical applications of HQSJZD have shown that it has a certain curative effect on Alzheimer's disease (AD). Methods The active components and targets of HQSJZD were searched in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The genes corresponding to the targets were retrieved using UniProt and GeneCard database. The herb-compound-target network and protein-protein interaction (PPI) network were constructed by Cytoscape. The core targets of HQSJZD were analysed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The main active compounds of HQSJZD were docked with acetylcholinesterase (AChE). In vitro experiments were conducted to detect the inhibitory and neuroprotective effects of AChE. Results Compound-target network mainly contained 132 compounds and 255 corresponding targets. The main compounds contained quercetin, kaempferol, formononetin, isorhamnetin, hederagenin, and calycosin. Key targets contained AChE, PTGS2, PPARG, IL-1B, GSK3B, etc. There were 1708 GO items in GO enrichment analysis and 310 signalling pathways in KEGG, mainly including the cAMP signalling pathway, the vascular endothelial growth factor (VEGF) signalling pathway, serotonergic synapses, the calcium signalling pathway, type II diabetes mellitus, arginine and proline metabolism, and the longevity regulating pathway. Molecular docking showed that hederagenin and formononetin were the top 2 compounds of HQSJZD, which had a high affinity with AChE. And formononetin has a good neuroprotective effect, which can improve the oxidative damage of nerve cells. Conclusion HQSJZD was found to have the potential to treat AD by targeting multiple AD-related targets. Formononetin and hederagenin in HQSJZD may regulate multiple signalling pathways through AChE, which might play a therapeutic role in AD.
Collapse
|
3
|
Vieira JS, de Souza GR, Kalil-Cutti B, Giusti-Paiva A, Vilela FC. Post-traumatic stress disorder increases pain sensitivity by reducing descending noradrenergic and serotoninergic modulation. Behav Brain Res 2021; 411:113367. [PMID: 34000338 DOI: 10.1016/j.bbr.2021.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Exposure to stress might influence pain sensitivity; however, little is known about whether post-traumatic stress disorder (PTSD)-like symptoms alter pain sensitivity and how it can happen. Male rats were exposed to the inescapable footshock paired with either social isolation or a control condition (not exposed to footshock but subjected to social isolation). After 7, 14, or 21 days, memory retention was evaluated. In the following three days, animals underwent the following tests: open-field, social interaction and formalin tests. Another group of animals were subjected to the object recognition test and to von Frey filaments. In other cohorts of animals, saline, fluoxetine, or desipramine were injected intrathecally and immunohistochemistry was performed to investigate whether PTSD-like symptoms alter the expression of c-Fos in serotonergic and noradrenergic neurons. Inescapable footshock induced the development of PTSD-like symptoms. Animals with PTSD-like symptoms showed an increase in the number of flinches in the formalin test and a reduction in mechanical threshold in the von Frey test at both retention intervals. The social interaction was negatively correlated with the nociceptive response in the formalin test. Fluoxetine or desipramine prevented the nociceptive response to chemical stimulus in the formalin test. In addition, in animals with PTSD-like symptoms, there was a reduction in c-Fos expression in serotonergic and noradrenergic neurons. Our results are important for the association of increased sensitivity to pain as one of the clinical manifestations that are present in the development of PTSD, and a possible treatment for increased pain sensitivity in male individuals with PTSD.
Collapse
Affiliation(s)
- Jádina S Vieira
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Guilherme R de Souza
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Bruna Kalil-Cutti
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fabiana C Vilela
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.
| |
Collapse
|
4
|
Shen Y, Zhang B, Pang X, Yang R, Chen M, Zhao J, Wang J, Wang Z, Yu Z, Wang Y, Li L, Liu A, Du G. Network Pharmacology-Based Analysis of Xiao-Xu-Ming Decoction on the Treatment of Alzheimer's Disease. Front Pharmacol 2021; 11:595254. [PMID: 33390981 PMCID: PMC7774966 DOI: 10.3389/fphar.2020.595254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) has become a worldwide disease that is harmful to human health and brings a heavy economic burden to healthcare system. Xiao-Xu-Ming Decoction (XXMD) has been widely used to treat stroke and other neurological diseases for more than 1000 years in China. However, the synergistic mechanism of the constituents in XXMD for the potential treatment of AD is still unclear. Therefore, the present study aimed to predict the potential targets and uncover the material basis of XXMD for the potential treatment of AD. A network pharmacology-based method, which combined data collection, drug-likeness filtering and absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties filtering, target prediction and network analysis, was used to decipher the effect and potential targets of XXMD for the treatment of AD. Then, the acetylcholinesterase (AChE) inhibitory assay was used to screen the potential active constituents in XXMD for the treatment of AD, and the molecular docking was furtherly used to identify the binding ability of active constituents with AD-related target of AChE. Finally, three in vitro cell models were applied to evaluate the neuroprotective effects of potential lead compounds in XXMD. Through the China Natural Products Database, Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database, Traditional Chinese Medicine (TCM)-Database @Taiwan and literature, a total of 1481 compounds in XXMD were finally collected. After ADME/T properties filtering, 908 compounds were used for the further study. Based on the prediction data, the constituents in XXMD formula could interact with 41 AD-related targets. Among them, cyclooxygenase-2 (COX-2), estrogen receptor α (ERα) and AChE were the major targets. The constituents in XXMD were found to have the potential to treat AD through multiple AD-related targets. 62 constituents in it were found to interact with more than or equal to 10 AD-related targets. The prediction results were further validated by in vitro biology experiment, resulting in several potential anti-AD multitarget-directed ligands (MTDLs), including two AChE inhibitors with the IC50 values ranging from 4.83 to 10.22 μM. Moreover, fanchinoline was furtherly found to prevent SH-SY5Y cells from the cytotoxicities induced by sodium nitroprusside, sodium dithionate and potassium chloride. In conclusion, XXMD was found to have the potential to treat AD by targeting multiple AD-related targets and canonical pathways. Fangchinoline and dauricine might be the potential lead compounds in XXMD for the treatment of AD.
Collapse
Affiliation(s)
- Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoyue Zhang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaocong Pang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Yang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Chen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaying Zhao
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziru Yu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuehua Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ailin Liu
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Yamaguchi M, Ishikawa M, Aono Y, Saigusa T. OX 2 receptors mediate the inhibitory effects of orexin-A on potassium chloride-induced increases in intracellular calcium ion levels in neurons derived from rat dorsal root ganglion in a chronic pain model. Neuropsychopharmacol Rep 2019; 40:30-38. [PMID: 31845549 PMCID: PMC7292216 DOI: 10.1002/npr2.12094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Orexin-A is known to induce anti-nociceptive effects in animal models of chronic pain. We have found that orexin-A inhibits KCl loading-induced increases in the intracellular calcium ion levels ([Ca2+ ]i ) in C-fiber-like neurons of rats showing inflammatory nociceptive behavior. Here, we examined the effects of orexin-A on the depolarization of C-fiber-like neurons derived from a rat model for another type of chronic pain, namely neuropathic pain. Thus, we analyzed the effects of orexin-A on KCl-induced increases in [Ca2+ ]i in C-fiber-like neurons of rats with sciatic nerve ligation. METHODS Paw withdrawal and threshold force in response to tactile stimuli were evaluated using von Frey filaments. Sham-operated rats served as controls. [Ca2+ ]i in neurons were visualized by calcium fluorescent probe. Changes in [Ca2+ ]i were assessed using relative fluorescence intensity. RESULTS Seven days after sciatic nerve ligation, paw withdrawal and threshold force for tactile stimuli were increased and reduced, respectively. KCl loading to neurons from either sciatic nerve-ligated or control rats increased relative fluorescence intensity. The KCl-induced increase in relative fluorescence intensity in sciatic nerve-ligated, but not that of control, rats was inhibited by orexin-A. The OX1 and OX2 receptor antagonist MK-4305 and OX2 receptor antagonist EMPA, but not the OX1 receptor antagonist SB 334867, each counteracted orexin-A-induced inhibition of KCl-provoked increases in relative fluorescence intensity. CONCLUSION The present findings constitute neuropharmacological evidence that OX2 but not OX1 receptors mediate the inhibitory effects of orexin-A on KCl-induced increases in [Ca2+ ]i in C-fiber-like neurons of rats showing hyperalgesia provoked by sciatic nerve ligation.
Collapse
Affiliation(s)
- Masami Yamaguchi
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Manabu Ishikawa
- Department of Anesthesiology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| |
Collapse
|