1
|
Gao D, Wang Y, Fu P, Qiu J, Li H. Modeling and Parameter Analysis of Basic Single Channel Neuron Mass Model for SSVEP. SENSORS (BASEL, SWITZERLAND) 2025; 25:1706. [PMID: 40292808 PMCID: PMC11946077 DOI: 10.3390/s25061706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 04/30/2025]
Abstract
While steady-state visual evoked potentials (SSVEPs) are widely used in brain-computer interfaces (BCIs) due to their robustness to rhythmic visual stimuli, their generation mechanisms remain poorly understood. Challenges such as experimental complexity, inter-subject variability, and limited physiological interpretability hinder the development of efficient BCI systems. This study employed a single-channel neural mass model (NMM) of V1 cortical dynamics to investigate the biophysical underpinnings of SSVEP generation. By systematically varying synaptic gain, time constants, and external input parameters, we simulated δ/α/γ band oscillations and analyzed their generation principles. The model demonstrates that synaptic gain controls oscillation amplitude and harmonic content, and time constants determine signal decay kinetics and frequency precision, while input variance modulates harmonic stability. Our results reveal how V1 circuitry generates frequency-locked SSVEP responses through excitatory-inhibitory interactions and dynamic filtering mechanisms. This computational framework successfully reproduces fundamental SSVEP characteristics without requiring multi-subject experimental data, offering new insights into the physiological basis of SSVEP-based brain-computer interfaces.
Collapse
Affiliation(s)
- Depeng Gao
- School of Yonyou Digital and Intelligence, Nantong Institute of Technology, Nantong 226000, China; (D.G.); (J.Q.)
| | - Yujuan Wang
- School of Software, Northwestern Polytechnical University, Xi’an 710000, China; (Y.W.); (P.F.)
| | - Peirong Fu
- School of Software, Northwestern Polytechnical University, Xi’an 710000, China; (Y.W.); (P.F.)
| | - Jianlin Qiu
- School of Yonyou Digital and Intelligence, Nantong Institute of Technology, Nantong 226000, China; (D.G.); (J.Q.)
| | - Hongqi Li
- School of Software, Northwestern Polytechnical University, Xi’an 710000, China; (Y.W.); (P.F.)
| |
Collapse
|
2
|
Ozdemir E. Adrenergic receptor system as a pharmacological target in the treatment of epilepsy (Review). MEDICINE INTERNATIONAL 2024; 4:20. [PMID: 38476984 PMCID: PMC10928664 DOI: 10.3892/mi.2024.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Epilepsy is a complex and common neurological disorder characterized by spontaneous and recurrent seizures, affecting ~75 million individuals worldwide. Numerous studies have been conducted to develop new pharmacological drugs for the effective treatment of epilepsy. In recent years, numerous experimental and clinical studies have focused on the role of the adrenergic receptor (AR) system in the regulation of epileptogenesis, seizure susceptibility and convulsions. α1-ARs (α1A, α1B and α1D), α2-ARs (α2A, α2B and α2C) and β-ARs (β1, β2 and β3), known to have convulsant or anticonvulsant effects, have been isolated. Norepinephrine (NE), the key endogenous agonist of ARs, is considered to play a crucial role in the pathophysiology of epileptic seizures. However, the effects of NE on different ARs have not been fully elucidated. Although the activation of some AR subtypes produces conflicting results, the activation of α1, α2 and β receptor subtypes, in particular, produces anticonvulsant effects. The present review focuses on NE and ARs involved in epileptic seizure formation and discusses therapeutic approaches.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Faculty of Medicine, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
3
|
Szabo B. Presynaptic Adrenoceptors. Handb Exp Pharmacol 2024; 285:185-245. [PMID: 38755350 DOI: 10.1007/164_2024_714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Presynaptic α2-adrenoceptors are localized on axon terminals of many noradrenergic and non-noradrenergic neurons in the peripheral and central nervous systems. Their activation by exogenous agonists leads to inhibition of the exocytotic release of noradrenaline and other transmitters from the neurons. Most often, the α2A-receptor subtype is involved in this inhibition. The chain of molecular events between receptor occupation and inhibition of the exocytotic release of transmitters has been determined. Physiologically released endogenous noradrenaline elicits retrograde autoinhibition of its own release. Some clonidine-like α2-receptor agonists have been used to treat hypertension. Dexmedetomidine is used for prolonged sedation in the intensive care; It also has a strong analgesic effect. The α2-receptor antagonist mirtazapine increases the noradrenaline concentration in the synaptic cleft by interrupting physiological autoinhibion of release. It belongs to the most effective antidepressive drugs. β2-Adrenoceptors are also localized on axon terminals in the peripheral and central nervous systems. Their activation leads to enhanced transmitter release, however, they are not activated by endogenous adrenaline.
Collapse
MESH Headings
- Animals
- Humans
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/physiology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Adrenergic alpha-2 Receptor Agonists/pharmacology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/physiology
- Receptors, Presynaptic/metabolism
- Synaptic Transmission/drug effects
- Receptors, Adrenergic, beta-2/metabolism
- Receptors, Adrenergic, beta-2/drug effects
Collapse
Affiliation(s)
- Bela Szabo
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Treviño M, Medina-Coss Y León R, Lezama E. Adrenergic Modulation of Visually-Guided Behavior. Front Synaptic Neurosci 2019; 11:9. [PMID: 30949042 PMCID: PMC6435528 DOI: 10.3389/fnsyn.2019.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/06/2019] [Indexed: 11/28/2022] Open
Abstract
Iontophoretic application of norepinephrine (NE) into the primary visual cortex (V1) in vivo reduces spontaneous and evoked activity, without changing the functional selectivity of cortical units. One possible consequence of this phenomenon is that adrenergic receptors (ARs) regulate the signal-to-noise ratio (SNR) of neural responses in this circuit. However, despite such strong inhibitory action of NE on neuronal firing patterns in V1, its specific action on visual behavior has not been studied. Furthermore, the majority of observations regarding cortical NE from in vivo recordings have been performed in anesthetized animals and have not been tested behaviorally. Here, we describe how micro-infusion of AR agonists/antagonists into mouse V1 influences visually-guided behavior at different contrasts and spatial frequencies. We found that cortical activation of α1- and β-AR produced a substantial reduction in visual discrimination performance at high contrasts and low spatial frequencies, consistent with a divisive effect. This reduction was reversible and was accompanied by a rise in escape latencies as well as an increase in the group averaged choice variance as a function of stimulus contrast. We conclude that pharmacological activation of cortical AR regulates visual perception and adaptive behavior through a divisive gain control of visual responses.
Collapse
Affiliation(s)
- Mario Treviño
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, México
| | - Ricardo Medina-Coss Y León
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, México
| | - Elí Lezama
- Laboratorio de Plasticidad Cortical y Aprendizaje Perceptual, Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
5
|
Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, Miranda-Morales M, Treviño M, Pineda JC, Salgado H. Locus Ceruleus Norepinephrine Release: A Central Regulator of CNS Spatio-Temporal Activation? Front Synaptic Neurosci 2016; 8:25. [PMID: 27616990 PMCID: PMC4999448 DOI: 10.3389/fnsyn.2016.00025] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Norepinephrine (NE) is synthesized in the Locus Coeruleus (LC) of the brainstem, from where it is released by axonal varicosities throughout the brain via volume transmission. A wealth of data from clinics and from animal models indicates that this catecholamine coordinates the activity of the central nervous system (CNS) and of the whole organism by modulating cell function in a vast number of brain areas in a coordinated manner. The ubiquity of NE receptors, the daunting number of cerebral areas regulated by the catecholamine, as well as the variety of cellular effects and of their timescales have contributed so far to defeat the attempts to integrate central adrenergic function into a unitary and coherent framework. Since three main families of NE receptors are represented-in order of decreasing affinity for the catecholamine-by: α2 adrenoceptors (α2Rs, high affinity), α1 adrenoceptors (α1Rs, intermediate affinity), and β adrenoceptors (βRs, low affinity), on a pharmacological basis, and on the ground of recent studies on cellular and systemic central noradrenergic effects, we propose that an increase in LC tonic activity promotes the emergence of four global states covering the whole spectrum of brain activation: (1) sleep: virtual absence of NE, (2) quiet wake: activation of α2Rs, (3) active wake/physiological stress: activation of α2- and α1-Rs, (4) distress: activation of α2-, α1-, and β-Rs. We postulate that excess intensity and/or duration of states (3) and (4) may lead to maladaptive plasticity, causing-in turn-a variety of neuropsychiatric illnesses including depression, schizophrenic psychoses, anxiety disorders, and attention deficit. The interplay between tonic and phasic LC activity identified in the LC in relationship with behavioral response is of critical importance in defining the short- and long-term biological mechanisms associated with the basic states postulated for the CNS. While the model has the potential to explain a large number of experimental and clinical findings, a major challenge will be to adapt this hypothesis to integrate the role of other neurotransmitters released during stress in a centralized fashion, like serotonin, acetylcholine, and histamine, as well as those released in a non-centralized fashion, like purines and cytokines.
Collapse
Affiliation(s)
- Marco Atzori
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis PotosíSan Luis Potosí, Mexico; School for Behavior and Brain Sciences, University of Texas at DallasRichardson, TX, USA
| | - Roberto Cuevas-Olguin
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Eric Esquivel-Rendon
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | | | - Roberto C Salgado-Delgado
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Nadia Saderi
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Marcela Miranda-Morales
- Neurobiology of Stress Laboratory, Facultad de Ciencias, Universidad Autónoma de San Luis Potosí San Luis Potosí, Mexico
| | - Mario Treviño
- Laboratory of Cortical Plasticity and Learning, Universidad de Guadalajara Guadalajara, Mexico
| | - Juan C Pineda
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| | - Humberto Salgado
- Electrophysiology Laboratory, Centro de Investigaciones Regionales "Dr. Hideyo Noguchi", Universidad Autónoma de Yucatán Mérida, Mexico
| |
Collapse
|
6
|
Norepinephrine versus dopamine and their interaction in modulating synaptic function in the prefrontal cortex. Brain Res 2016; 1641:217-33. [PMID: 26790349 DOI: 10.1016/j.brainres.2016.01.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023]
Abstract
Among the neuromodulators that regulate prefrontal cortical circuit function, the catecholamine transmitters norepinephrine (NE) and dopamine (DA) stand out as powerful players in working memory and attention. Perturbation of either NE or DA signaling is implicated in the pathogenesis of several neuropsychiatric disorders, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia, and drug addiction. Although the precise mechanisms employed by NE and DA to cooperatively control prefrontal functions are not fully understood, emerging research indicates that both transmitters regulate electrical and biochemical aspects of neuronal function by modulating convergent ionic and synaptic signaling in the prefrontal cortex (PFC). This review summarizes previous studies that investigated the effects of both NE and DA on excitatory and inhibitory transmissions in the prefrontal cortical circuitry. Specifically, we focus on the functional interaction between NE and DA in prefrontal cortical local circuitry, synaptic integration, signaling pathways, and receptor properties. Although it is clear that both NE and DA innervate the PFC extensively and modulate synaptic function by activating distinctly different receptor subtypes and signaling pathways, it remains unclear how these two systems coordinate their actions to optimize PFC function for appropriate behavior. Throughout this review, we provide perspectives and highlight several critical topics for future studies. This article is part of a Special Issue entitled SI: Noradrenergic System.
Collapse
|
7
|
Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behav Brain Sci 2015; 39:e200. [PMID: 26126507 DOI: 10.1017/s0140525x15000667] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.
Collapse
|