1
|
The Association between the rs312457 Genotype of the SLC16a13 Gene and Diabetes Mellitus in a Chinese Population. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9918055. [PMID: 34257700 PMCID: PMC8257359 DOI: 10.1155/2021/9918055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022]
Abstract
Objective SLC16a genes encode H + -coupled monocarboxylate transporters (MCTs). MCTs are involved in maintaining interstitial fluids' pH and regulating insulin's binding affinity to its receptor, which is a potential mechanism for the onset of diabetes. In this research, we make explorations of the association between the rs312457 genotype of the SLC16a13 gene and diabetes in the Chinese population. Methods It included 384 type 2 diabetes patients and 1,468 healthy control subjects in total. We measured the anthropometric parameters, glycaemic index, homeostasis model assessment-B cell (HOMA-%B), lipid profile, and homeostasis model assessment-insulin resistance (HOMA-IR). The associations between the rs312457 genotype and type 2 diabetes were analyzed. Results The rs312457 genotype was markedly in relation to type 2 diabetes (P = 0.002). The frequency of the rs312457 risk allele (G) was 4.8%, higher than that of the wild-type allele (A) in patients of type 2 diabetes, indicating that allele (G)'s presence seemed to make the risk of type 2 diabetes go up. Compared to the GA and AA genotypes, the GG genotype of rs312457 significantly increased the risk of contracting diabetes mellitus (P ≤ 0.001). Moreover, the rs312457 genotype was associated with HOMA-%B. Subjects harbored the GG genotype of rs312457, whose HOMA-%B level went down in comparison with that in subjects harboring the AA genotype (P = 0.023). Conclusion Our results revealed that the rs312457 genotype of the SLC16a13 gene was correlated with the development of diabetes mellitus in the Chinese population.
Collapse
|
2
|
Influence of IGF2BP2, HMG20A, and HNF1B genetic polymorphisms on the susceptibility to Type 2 diabetes mellitus in Chinese Han population. Biosci Rep 2021; 40:222767. [PMID: 32329795 PMCID: PMC7256674 DOI: 10.1042/bsr20193955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background: The present study aimed to investigate the roles of insulin related gene IGF2BP2, HMG20A, and HNF1B variants in the susceptibility of Type 2 diabetes mellitus (T2DM), and to identify their association with age, gender, BMI, and smoking and alcohol drinking behavior among the Han Chinese population. Methods: About 508 patients with T2DM and 503 healthy controls were enrolled. Rs11927381 and rs7640539 in IGF2BP2, rs7178572 in HMG20A, rs4430796, and rs11651052 in HNF1B were genotyped by using the Agena MassARRAY. Odds ratio (OR) and 95% confidence intervals (CI) were calculated by logistic regression. Results: We found that HMG20A rs7178572 (OR = 1.25, P = 0.015) and HNF1B rs11651052 (OR = 1.26, P = 0.019) increased the risk of T2DM. Rs7178572, rs4430796, and rs11651052 might be related to the higher T2DM susceptibility not only by itself but also by interacting with age, gender smoking, and alcohol drinking. Rs11927381 also conferred the higher T2DM susceptibility at age ≤ 59 years. Besides, rs7178572-AA (P = 0.032) genotype and rs11651052 GG (P = 0.018) genotype were related to higher glycated hemoglobin and insulin level, respectively. Conclusion: Specifically, we first found that rs11927381, rs7640539, and rs11651052 were associated with risk of T2DM among the Han Chinese population. We also provide evidence that age, gender, BMI, smoking, and drinking status have an interactive effect with these variants on T2DM susceptibility.
Collapse
|
3
|
Wang W, Jiang H, Zhang Z, Duan W, Han T, Sun C. Interaction between dietary branched-chain amino acids and genetic risk score on the risk of type 2 diabetes in Chinese. GENES & NUTRITION 2021; 16:4. [PMID: 33663374 PMCID: PMC7934387 DOI: 10.1186/s12263-021-00684-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/17/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have found the important gene-diet interactions on type 2 diabetes (T2D) incident but have not followed branched-chain amino acids (BCAAs), even though they have shown heterogeneous effectiveness in diabetes-related factors. So in this study, we aim to investigate whether dietary BCAAs interact with the genetic predisposition in relation to T2D risk and fasting glucose in Chinese adults. METHODS In a case-control study nested in the Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases, we obtained data for 434 incident T2D cases and 434 controls matched by age and sex. An unweighted genetic risk score (GRS) was calculated for 25 T2D-related single nucleotide polymorphisms by summation of the number of risk alleles for T2D. Multivariate logistic regression models and general linear regression models were used to assess the interaction between dietary BCAAs and GRS on T2D risk and fasting glucose. RESULTS Significant interactions were found between GRS and dietary BCAAs on T2D risk and fasting glucose (p for interaction = 0.001 and 0.004, respectively). Comparing with low GRS, the odds ratio of T2D in high GRS were 2.98 (95% CI 1.54-5.76) among those with the highest tertile of total BCAA intake but were non-significant among those with the lowest intake, corresponding to 0.39 (0.12) mmol/L versus - 0.07 (0.10) mmol/L fasting glucose elevation per tertile. Viewed differently, comparing extreme tertiles of dietary BCAAs, the odds ratio (95% CIs) of T2D risk were 0.46 (0.22-0.95), 2.22 (1.15-4.31), and 2.90 (1.54-5.47) (fasting glucose elevation per tertile: - 0.23 (0.10), 0.18 (0.10), and 0.26 (0.13) mmol/L) among participants with low, intermediate, and high genetic risk, respectively. CONCLUSIONS This study indicated that dietary BCAAs could amplify the genetic association with T2D risk and fasting glucose. Moreover, higher BCAA intake showed positive association with T2D when genetic predisposition was also high but changed to negative when genetic predisposition was low.
Collapse
Affiliation(s)
- Weiqi Wang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Haiyang Jiang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Ziwei Zhang
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Wei Duan
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Tianshu Han
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China
| | - Changhao Sun
- National Key Discipline, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Harbin, 150081, People's Republic of China.
| |
Collapse
|
4
|
Kong X, Xing X, Zhang X, Hong J, Yang W. Early-onset type 2 diabetes is associated with genetic variants of β-cell function in the Chinese Han population. Diabetes Metab Res Rev 2020; 36:e3214. [PMID: 31465628 DOI: 10.1002/dmrr.3214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/24/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the genetic factors contributing to early-onset type 2 diabetes (EOD) in the Chinese Hans populations. MATERIALS AND METHODS For 2734 newly diagnosed type 2 diabetes patients and 4041 normal glycemic controls, 25 single nucleotide polymorphisms from 24 genomic loci linked to diabetes were successfully genotyped. Three genetic risk scores (GRSs) were constructed, including the weighted type 2 diabetes-related GRS (wT-GRS), the weighted β-cell function-related GRS (wB-GRS), and the weighted GRS constructed by risk alleles not related to β-cell function (wNB-GRS). For patients with diabetes, EOD, middle-age-onset type 2 diabetes (MOD), and late-onset type 2 diabetes (LOD) were defined by onset ages ≤40, 40 to 60, and ≥60 years, respectively. RESULTS From single marker analysis, different gene profiles were identified between EOD and LOD patients. EOD patients had greater wT-GRS and wB-GRS values than LOD patients. After adjustment for sex, elevated wT-GRS and wB-GRS values were significantly associated with an increased risk for EOD by 1.11- and 1.21-fold per allele (P = 1.69 × 10-7 ; 6.07 × 10-8 ). The wT-GRS and wNB-GRS were nominally related to an increased risk of LOD by 1.03-fold per allele (P = 1.03 × 10-2 , 1.78 × 10-2 ). In patients with diabetes, higher wT-GRS and wB-GRS were associated with younger onset age [wT-GRS: β (SE) = -0.0033(0.0016), P = 3.74 × 10-2 ; wB-GRS: -0.0076(0.0028), 7.45 × 10-3 ] and decreased insulinogenic index [wT-GRS: -0.0384(0.0098), 9.39 × 10-5 ; wB-GRS: -0.0722(0.0176), 4.21 × 10-5 ]. CONCLUSION Our findings indicate a strong genetic predisposition for EOD, which can be mainly attributed to genetic variants linked to β-cell function, suggesting the β-cell dysfunction plays a key role in the pathogenesis of EOD in Chinese Han individuals.
Collapse
Affiliation(s)
- Xiaomu Kong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyan Xing
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xuelian Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Hong
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Wenying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Yahaya TO, Salisu TF. A Review of Type 2 Diabetes Mellitus Predisposing Genes. Curr Diabetes Rev 2019; 16:52-61. [PMID: 30514191 DOI: 10.2174/1573399815666181204145806] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/22/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Scientists are considering the possibility of treating diabetes mellitus (DM) using a personalized approach in which various forms of the diseases will be treated based on the causal gene and its pathogenesis. To this end, scientists have identified mutations in certain genes as probable causes of Type 2 diabetes mellitus (T2DM) with diverse mechanisms. AIM This review was aimed at articulating already identified T2DM genes with their mechanisms of action and phenotypic presentations for the awareness of all stakeholders. METHOD The Google search engine was used to retrieve relevant information on the subject from reliable academic databases such as PubMed, Medline, and Google Scholar, among others. RESULTS At least seventy (70) genes are currently being suspected in the biogenesis of T2DM. However, mutations in, or variants of KCNJ11, PPARG, HNF1B and WFS1 genes, are the most suspected and reported in the pathogenesis of the disease. Mutations in these genes can cause disruption of insulin biosynthesis through the destruction of pancreatic beta cells, change of beta cell morphology, destruction of insulin receptors, among others. These cellular events may lead to insulin resistance and hyperglycemia and, along with environmental triggers such as obesity and overweight, culminate in T2DM. It was observed that each identified gene has its distinct mechanism by which it interacts with other genes and environmental factors to cause T2DM. CONCLUSION Healthcare providers are advised to formulate T2DM drugs or treatment by targeting the causal genes along with their mechanisms.
Collapse
Affiliation(s)
- Tajudeen O Yahaya
- Department of Biology, Federal University Birnin Kebbi, Kebbi State, Nigeria
| | - Titilola F Salisu
- Department of Cell Biology and Genetics, University of Lagos, Lagos, Nigeria
| |
Collapse
|
6
|
Long Z, Cao M, Su S, Wu G, Meng F, Wu H, Liu J, Yu W, Atabai K, Wang X. Inhibition of hepatocyte nuclear factor 1b induces hepatic steatosis through DPP4/NOX1-mediated regulation of superoxide. Free Radic Biol Med 2017; 113:71-83. [PMID: 28942246 PMCID: PMC5927376 DOI: 10.1016/j.freeradbiomed.2017.09.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/06/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder that is closely associated with insulin resistance and type 2 diabetes. Previous studies have suggested that hepatocyte nuclear factor 1b (HNF1b) ameliorates insulin resistance. However, the role of HNF1b in the regulation of lipid metabolism and hepatic steatosis remains poorly understood. We found that HNF1b expression was decreased in steatotic livers. We injected mice with lentivirus (LV) expressing HNF1b shRNA to generate mice with hepatic knockdown of HNF1b. We also injected high fat (HF) diet-induced obese and db/db diabetic mice with LV expressing HNF1b to overexpress HNF1b. Knockdown of HNF1b increased hepatic lipid contents and induced insulin resistance in mice and in hepatocytes. Knockdown of HNF1b worsened HF diet-induced increases in hepatic lipid contents, liver injury and insulin resistance in mice and PA-induced lipid accumulation and impaired insulin signaling in hepatocytes. Moreover, overexpression of HNF1b alleviated HF diet-induced increases in hepatic lipid content and insulin resistance in mice. Knockdown of HNF1b increased expression of genes associated with lipogenensis and endoplasmic reticulum (ER) stress. DPP4 and NOX1 expression was increased by knockdown of HNF1b and HNF1b directly bound with the promoters of DPP4 and NOX1. Overexpression of DPP4 or NOX1 was associated with an increase in lipid droplets in hepatocytes and decreased expression of DPP4 or NOX1 suppressed the effects of knockdown of HNF1b knockdown on triglyceride (TG) formation and insulin signaling. Knockdown of HNF1b increased superoxide level and decreased glutathione content, which was inhibited by downregulation of DPP4 and NOX1. N-acetylcysteine (NAC) suppressed HNF1b knockdown-induced ER stress, TG formation and insulin resistance. Palmitic acid (PA) decreased HNF1b expression which was inhibited by NAC. Taken together, these studies demonstrate that HNF1b plays an essential role in controlling hepatic TG homeostasis and insulin sensitivity by regulating DPP4/NOX1mediated generation of superoxide.
Collapse
Affiliation(s)
- Zi Long
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Meng Cao
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Shuhao Su
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Guangyuan Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fansen Meng
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Wu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jiangzheng Liu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Weihua Yu
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Kamran Atabai
- Cardiovascular Research Institute, University of California, San Francisco, United States; Department of Medicine, University of California, San Francisco, United States
| | - Xin Wang
- Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Wang X, Li W, Ma L, Ping F, Liu J, Wu X, Mao J, Wang X, Nie M. Variants in MODY genes associated with maternal lipids profiles in second trimester of pregnancy. J Gene Med 2017; 19. [PMID: 28591938 DOI: 10.1002/jgm.2962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Wei Li
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Liangkun Ma
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Fan Ping
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Juntao Liu
- Department of Obstetrics and Gynecology; Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xueyan Wu
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Jiangfeng Mao
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Xi Wang
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| | - Min Nie
- Key Laboratory of Endocrinology, Ministry of Health; Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
8
|
Hepatocyte nuclear factor 1b is a novel negative regulator of white adipocyte differentiation. Cell Death Differ 2017. [PMID: 28622294 DOI: 10.1038/cdd.2017.85] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatocyte nuclear factor 1b (HNF1b) is a transcription factor belonging to the HNF family. We aimed to investigate the role of HNF1b in white adipocyte differentiation. The expression of HNF1b was reduced in white adipose tissue (WAT) of both diet-induced and genetic obese mice and decreased during the process of 3T3-L1 adipocyte differentiation. Downregulation of HNF1b enhanced 3T3-L1 adipocyte differentiation and upregulation of HNF1b inhibited this process. Upregulation of HNF1b inhibited peroxisome proliferator-activated receptor γ (PPARγ) and its target gene expression, while downregulation of HNF1b increased those genes expression. Overexpression of PPARγ suppressed HNF1b upregulation-induced inhibition of adipocyte differentiation. HNF1b can directly bind with the promoter of PPARγ in 3T3-L1 cells, which was decreased after adipogenic differentiation. HNF1b promoted apoptotic and autophagic cell death in early differentiated adipocytes through regulation of cell cycle progress and cell death-related factors, and thus inhibited the process of mitotic clonal expansion (MCE). HNF1b acted as an antioxidant regulator through regulating various antioxidant enzymes via binding with antioxidant response element. Oxidant treatment suppressed HNF1b upregulation-induced inhibition of adipocyte differentiation. Overall, our results suggest that HNF1b is a novel negative regulator of adipocyte differentiation through regulation of PPARγ signaling, MCE and redox state.
Collapse
|
9
|
Tarnowski M, Malinowski D, Safranow K, Dziedziejko V, Pawlik A. HNF1B, TSPAN8 and NOTCH2 gene polymorphisms in women with gestational diabetes. J Matern Fetal Neonatal Med 2017; 31:837-842. [PMID: 28274157 DOI: 10.1080/14767058.2017.1297793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate genes involved in pancreatic beta cell function, insulin production and glucose metabolism that may predispose to gestational diabetes mellitus (GDM). METHODS The study group consisted of 204 women with GDM and 207 women with normal glucose tolerance (NGT). The following polymorphisms were genotyped for each patient: HNF1B rs4430796, TSPAN8 rs7961581 and NOTCH2 rs10923931. A p value of <.05 was considered to indicate a statistically significant result. RESULTS There was a statistically significant increase in the frequency of HNF1B rs4430796 G allele among pregnant women with GDM (GG+AG versus AA, OR: 1.55, 95% CI: 1.01-2.36, p = .042; G versus A, OR: 1.39, 95% CI: 1.06-1.83, p = .018), whereas there were no statistically significant differences in the distributions of TSPAN8 rs7961581 and NOTCH2 rs10923931 genotypes and alleles between women with GDM and healthy pregnant women. In the multivariate logistic regression analysis, older age, higher BMI before pregnancy and a higher number of HNF1B rs4430796 G alleles were independent significant predictors of a higher risk of GDM. CONCLUSIONS The results of this study suggest that the HNF1B gene rs4430796 G allele may be associated with increased risk of GDM.
Collapse
Affiliation(s)
- Maciej Tarnowski
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Damian Malinowski
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| | - Krzysztof Safranow
- b Department of Biochemistry and Medical Chemistry , Pomeranian Medical University , Szczecin , Poland
| | - Violetta Dziedziejko
- b Department of Biochemistry and Medical Chemistry , Pomeranian Medical University , Szczecin , Poland
| | - Andrzej Pawlik
- a Department of Physiology , Pomeranian Medical University , Szczecin , Poland
| |
Collapse
|
10
|
Lu J, Luo Y, Wang J, Hu C, Zhang R, Wang C, Jia W. Association of type 2 diabetes susceptibility loci with peripheral nerve function in a Chinese population with diabetes. J Diabetes Investig 2016; 8:115-120. [PMID: 27253191 PMCID: PMC5217885 DOI: 10.1111/jdi.12546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/18/2016] [Accepted: 06/01/2016] [Indexed: 12/17/2022] Open
Abstract
Aims/Introduction Previous studies have suggested a possible relationship between type 2 diabetes mellitus susceptibility loci and diabetic complications. The present study aimed to investigate the associations between type 2 diabetes mellitus loci with peripheral nerve function in a Chinese population with type 2 diabetes mellitus. Materials and Methods A total of 1,900 type 2 diabetes mellitus patients were recruited in the study. We selected ten single nucleotide polymorphisms (SNPs) from ten type 2 diabetes mellitus susceptibility genes previously confirmed in Chinese patients. Genotyping was carried out by using a MassARRAY Compact Analyzer. Peripheral nerve function was evaluated by nerve conduction studies in all participants. The composite Z‐scores for nerve conduction parameters including conduction velocity (CV), amplitude and latency were calculated, respectively. Results Rs5219 of KCNJ11 (E23K, G→A) was identified to be associated with all the parameters obtained from nerve conduction studies (Z‐score of CV: β = 0.113, P = 0.01; Z‐score of amplitude: β = 0.133, P = 0.01; Z‐score of latency: β = −0.116, P = 0.01) after adjustment for covariates including age, duration and glycated hemoglobin. Specifically, each copy of the A allele was related to better outcomes. CDKAL1 rs7756992 and TCF7L2 rs7903146 correlated with the composite Z‐score of amplitude (P = 0.028 and P = 0.016, respectively), but not CV (P = 0.393 and P = 0.281, respectively) or latency (P = 0.286 and P = 0.273, respectively). There were no significant associations between the other seven SNPs and peripheral nerve function. Conclusions Rs5219 at KCNJ11 (E23K) was associated with peripheral nerve function in a Chinese population with type 2 diabetes mellitus, suggesting shared genetic factors for type 2 diabetes mellitus and diabetic polyneuropathy in this population.
Collapse
Affiliation(s)
- Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Yi Luo
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Rong Zhang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Diabetes Institute, Shanghai, China.,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.,Shanghai Clinical Center for Diabetes, Shanghai, China
| |
Collapse
|
11
|
Liao S, Liu Y, Chen X, Tan Y, Mei J, Song W, Gan L, Wang H, Yin S, Dong X, Chi S, Deng S. The Impact of Genetic Variants for Different Physiological Characterization of Type 2 Diabetes Loci on Gestational Insulin Signaling in Nondiabetic Pregnant Chinese Women. Reprod Sci 2015; 22:1421-8. [DOI: 10.1177/1933719115580995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shunyao Liao
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunqiang Liu
- Department of Medical Genetics, Division of Morbid Genomics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Chen
- Columbia Center for Translational Immunology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yuande Tan
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenzhong Song
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Gan
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shi Yin
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjue Dong
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shu Chi
- Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shaoping Deng
- Diabetes Center & Institute of Transplantation, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Human Islet Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
A novel mutation in leptin gene is associated with severe obesity in Chinese individuals. BIOMED RESEARCH INTERNATIONAL 2014; 2014:912052. [PMID: 24707501 PMCID: PMC3953508 DOI: 10.1155/2014/912052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
Obesity is a clinical syndrome which is driven by interactions between multiple genetic and environmental factors. Monogenic obesity is a rare type of obesity which is caused by a mutation in a single gene.
Patients with monogenic obesity may develop early onset of obesity and severe metabolic abnormalities. In this study, we screened mutations of LEP in a total of 135 Chinese individuals including
35 obese patients whose BMI ≥32 kg/m2 and 100 controls with BMI <25 kg/m2. Moreover, detailed information and clinical measurements of the participants
were also collected. Finally, we identified a novel nonsynonymous mutation H118L in exon 3 of LEP in one patient with BMI 46.0 kg/m2. This mutation was not identified in the
controls. We speculated that the mutation H118L in LEP might be associated with severe obesity in Chinese subjects. However, the substantial mechanism should be further investigated.
Collapse
|
13
|
Zeng Z, Liao R, Yao Z, Zhou W, Ye P, Zheng X, Li X, Huang Y, Chen S, Chen Q. Three single nucleotide variants of the HDAC gene are associated with type 2 diabetes mellitus in a Chinese population: a community-based case-control study. Gene 2013; 533:427-33. [PMID: 24120624 DOI: 10.1016/j.gene.2013.09.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/12/2013] [Accepted: 09/29/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES There are no data regarding the possible role of the single nucleotide polymorphism (SNP) of class I histone deacetylases (HDACs) in type 2 diabetes mellitus (DM). We designed this study to examine whether polymorphisms of HDACs can be implicated in that disease. METHODS A community-based, case-control study was conducted, with a total of 568 subjects (284 patients and 284 controls) enrolled. Four polymorphisms of HDAC1 (rs1741981) and HDAC3 (rs11741808, rs2547547, rs2530223) were examined by the use of TaqMan technology. RESULTS We found a significant association with risk of type 2 DM for three SNPs of HDAC3, including rs11741808 [odds ratio (OR)=0.53, 95% confidence interval (CI): 0.35-0.81], rs2547547 [OR=1.72, 95% CI: 1.13-2.64], and rs2530223 [OR=1.39; 95% CI: 1.01-1.91]. Subgroup analysis showed that BMI≥23kg/m(2), high triglyceride and high blood pressure, together with the rs11741808AG genotype, were associated with a significantly decreased risk for type 2 DM, with ORs of 0.50 (95% CI: 0.27-0.91), 0.38 (95% CI: 0.20-0.71) and 0.43 (95% CI: 0.24-0.76) compared with the AA genotype, respectively. In a population with normal total cholesterol, the AG genotype yielded a significantly decreased risk of type 2 DM risk, with an OR of 0.42 (95% CI: 0.25-0.70) when compared with the persons of the AA genotype. For rs2547547, in a population with normal total cholesterol and triglyceride, the AG genotype was associated with a significantly increased risk of type 2 DM, with ORs of 1.92 (95% CI: 1.17-3.15) and 2.24 (95% CI: 1.28-3.94) when compared with the population carrying the AA genotype. CONCLUSIONS The results suggest that variants of HDAC3 contribute to an increased prevalence of type 2 DM in the Chinese Han population.
Collapse
Affiliation(s)
- Zhuanping Zeng
- Department of Epidemiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China; School of Public Health, Guangdong Key Laboratory of Molecular Epidemiology, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lancman JJ, Zvenigorodsky N, Gates KP, Zhang D, Solomon K, Humphrey RK, Kuo T, Setiawan L, Verkade H, Chi YI, Jhala US, Wright CVE, Stainier DYR, Dong PDS. Specification of hepatopancreas progenitors in zebrafish by hnf1ba and wnt2bb. Development 2013; 140:2669-79. [PMID: 23720049 PMCID: PMC3678338 DOI: 10.1242/dev.090993] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2013] [Indexed: 12/16/2022]
Abstract
Although the liver and ventral pancreas are thought to arise from a common multipotent progenitor pool, it is unclear whether these progenitors of the hepatopancreas system are specified by a common genetic mechanism. Efforts to determine the role of Hnf1b and Wnt signaling in this crucial process have been confounded by a combination of factors, including a narrow time frame for hepatopancreas specification, functional redundancy among Wnt ligands, and pleiotropic defects caused by either severe loss of Wnt signaling or Hnf1b function. Using a novel hypomorphic hnf1ba zebrafish mutant that exhibits pancreas hypoplasia, as observed in HNF1B monogenic diabetes, we show that hnf1ba plays essential roles in regulating β-cell number and pancreas specification, distinct from its function in regulating pancreas size and liver specification, respectively. By combining Hnf1ba partial loss of function with conditional loss of Wnt signaling, we uncover a crucial developmental window when these pathways synergize to specify the entire ventrally derived hepatopancreas progenitor population. Furthermore, our in vivo genetic studies demonstrate that hnf1ba generates a permissive domain for Wnt signaling activity in the foregut endoderm. Collectively, our findings provide a new model for HNF1B function, yield insight into pancreas and β-cell development, and suggest a new mechanism for hepatopancreatic specification.
Collapse
Affiliation(s)
- Joseph J. Lancman
- Sanford Children’s Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Natasha Zvenigorodsky
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Diabetes Center and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Keith P. Gates
- Sanford Children’s Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Danhua Zhang
- Sanford Children’s Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keely Solomon
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rohan K. Humphrey
- Pediatric Diabetes Research Center, UCSD School of Medicine, La Jolla CA 92037, USA
| | - Taiyi Kuo
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Diabetes Center and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Linda Setiawan
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Diabetes Center and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Heather Verkade
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Diabetes Center and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Young-In Chi
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Ulupi S. Jhala
- Pediatric Diabetes Research Center, UCSD School of Medicine, La Jolla CA 92037, USA
| | - Christopher V. E. Wright
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and the Diabetes Center and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - P. Duc Si Dong
- Sanford Children’s Health Research Center, Programs in Genetic Disease, Development and Aging, and Stem Cell and Regenerative Biology, Graduate School of Biomedical Sciences, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Chen G, Xu Y, Lin Y, Lai X, Yao J, Huang B, Chen Z, Huang H, Fu X, Lin L, Lai S, Wen J. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population. J Diabetes 2013; 5:136-45. [PMID: 23298195 DOI: 10.1111/1753-0407.12025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 12/03/2012] [Accepted: 01/02/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Genetic determinations are important in type 2 diabetes (T2DM) pathology. We investigated associations between genetic variants of 17 diabetes-related genes/loci, T2DM and diabetic complications in Chinese She subjects. METHODS A comprehensive gene-based association study was conducted using 17 single nucleotide polymorphisms in Chinese She subjects with normal glucose tolerance (n = 1119), impaired glucose regulation (n = 1767), and T2DM (n = 443). We applied major abnormal Minnesota Code findings to predict cardiovascular risk and estimated glomerular filtration rate to assess kidney function. RESULTS Nine variants in FTO rs8050136, WFS1 rs10010131, CDKN2A/B rs10811661, KCNJ11 rs5219, CDC123/CAMK1D rs12779790, JAZF1 rs864745, SLC30A8 rs13266634, CDKAL1 rs10946398, and HHEX/IDE rs5015480 were significantly associated with T2DM (P < 0.05). Single nucleotide polymorphisms in WFS1 rs10010131, CDKN2A/B rs10811661, CDC123/CAMK1D rs12779790, JAZF1 rs864745, FTO rs8050136, and HHEX/IDE rs5015480 were associated with T2DM and impaired glucose regulation. Risk alleles in WFS1 rs10010131, IGF2BP2 rs4402960, CDKAL1 rs10946398, FTO rs8050136, KCNQ1 rs2237897, and ADAMTS9 rs4607103 were significantly associated with decreased homeostatic model assessment (HOMA)-β (P < 0.05). After adjusting for age, gender and body mass index, genetic variants JAZF1 rs864745, FTO rs8050136, and HHEX/IDE rs5015480 were significantly related to reduced estimated glomerular filtration rate (P < 0.05). Genetic variants in WFS1 rs10010131, CDKN2A/B rs10811661, CDC123/CAMID rs12779790, JAZF1 rs864745, FTO rs80501360, CDKAL1 rs10946398, and HHEX/IDE rs5015480 correlated with abnormal major Minnesota Code findings (P < 0.05). CONCLUSION Variants in WFS1, CDKN2A/B, KCNJ11, CDC123/CAMK1D, JAZF1, SLC30A8, FTO, CDKAL1, and HHEX/IDE genes are significantly associated with T2DM in She Chinese subjects. JAZF1, FTO, CDKAL1, and HHEX/IDE are associated with diabetic nephropathy. WFS1, CDKN2A/B, CDC123/CAMK1D, JAZF1, FTO, CDKAL1, and HHEX/IDE are associated with cardiovascular risk.
Collapse
Affiliation(s)
- Gang Chen
- Department of Endocrinology, Fujian Provincial Hospital, Fujian Medical University, Fujian Provincial Hospital Key Laboratory of Endocrinology, Fuzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun JZ, Yang XX, Hu NY, Li X, Li FX, Li M. Genetic Variants in MMP9 and TCF2 Contribute to Susceptibility to Lung Cancer. Chin J Cancer Res 2013; 23:183-7. [PMID: 23467666 DOI: 10.1007/s11670-011-0183-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/17/2011] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The Wnt signaling pathway is crucial for pulmonary development and differentiation; dysregulation of the Wnt signaling pathway may impair lung function. Indeed, single nucleotide polymorphisms (SNPs) of Wnt pathway-related genes have been suggested as risk factors for certain types of cancers. In this study, we aimed to evaluate the influence of SNPs in Wnt-related genes (TCF2, MMP9) on susceptibility to lung cancer. METHODS Polymorphisms of TCF2 rs4430796, MMP9 rs2250889, and MMP9 rs17576 were studied in Han Chinese subjects, including 135 patients with lung cancer and 176 controls, using the Sequenom MassARRAY platform. The association of genotypes with susceptibility to lung cancer was analyzed using odds ratio (OR), with 95% confidence interval (95% CI) and χ(2). RESULTS The three SNPs (rs4430796, rs2250889, and rs17576) were found to be significantly associated with an increased risk of lung cancer. The AA genotype and AG+AA genotype of rs4430796 showed a significantly increased susceptibility to lung cancer compared with the GG genotype (adjusted OR=6.03, 95% CI: 1.30-28.09, P=0.022; 5.55, 95% CI: 1.20-25.58, P=0.028). Compared with the rs17576 GG genotype, the AG and AG+AA genotypes were also associated with a significant risk (adjusted OR=2.65, 95% CI: 1.60-4.37, P≤0.001; 2.57, 95% CI: 1.59-4.19, P≤0.001) whereas the rs2250889 CG and CG+GG genotypes had 2.97-fold (95% CI: 1.81-4.85; P≤0.001) and 2.80-fold increased associations with lung cancer (95% CI: 1.73-4.54; P≤0.001), respectively, compared with the rs2250889 CC genotype. Furthermore, the association of rs4430796 with lung cancer became insignificant (P>0.05) after adjusting for gender and rs2250889. CONCLUSION The three SNPs may play a role in the predisposition of members of the Han Chinese population to lung cancer.
Collapse
Affiliation(s)
- Jing-Zhe Sun
- School of Biotechnology, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | |
Collapse
|
17
|
Association of single nucleotide polymorphisms in TCF2 with type 2 diabetes susceptibility in a Han Chinese population. PLoS One 2012; 7:e52938. [PMID: 23300827 PMCID: PMC3534126 DOI: 10.1371/journal.pone.0052938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/22/2012] [Indexed: 12/15/2022] Open
Abstract
Hepatocyte nuclear factor 1β (HNF1β), a transcription factor encoded by the transcription factor 2 gene (TCF2), plays a critical role in pancreatic cell formation and glucose homeostasis. It has been suggested that single nucleotide polymorphisms (SNPs) of TCF2 are associated with susceptibility to type 2 diabetes (T2D). However, published results are inconsistent and inclusive. To further investigate the role of these common variants, we examined the association of TCF2 polymorphisms with the risk of T2D in a Han population in northeastern China. We genotyped five SNPs in 624 T2D patients and 630 healthy controls by using a SNaPshot method, and evaluated the T2D risk conferred by individual SNPs and haplotypes. In the single-locus analysis, we found that rs752010, rs4430796 and rs7501939 showed allelic differences between T2D patients and healthy controls, with an OR of 1.26 (95% CI 1.08-1.51, P = 0.003), an OR of 1.23 (95% CI 1.06-1.55, P = 0.001) and an OR of 1.28 (95% CI 1.10-1.61, P = 0.001), respectively. Genotype association analysis of each locus also revealed that the homozygous carriers of the at-risk allele had a significant increased T2D risk compared to homozygous carriers of the other allele (OR 1.78, 95% CI 1.20-2.64 for rs752010; OR 1.82, 95% CI 1.24-2.67 for rs4430796; OR 1.95, 95% CI 1.31-2.90 for rs7501939), even after Bonferroni correction for multiple comparisons. Besides, the haplotype-based analysis demonstrated that AGT in block rs752010-rs4430796-rs7501939 was associated with about 30% increase in T2D risk (OR 1.31, 95% CI 1.09-1.57, P = 0.01). Our findings suggested that TCF2 variants may be involved in T2D risk in a Han population of northeastern China. Larger studies with ethnically diverse populations are warranted to confirm the results reported in this investigation.
Collapse
|
18
|
Chen KC, Chang SS, Tsai FJ, Chen CYC. Han ethnicity-specific type 2 diabetic treatment from traditional Chinese medicine? J Biomol Struct Dyn 2012; 31:1219-35. [PMID: 23146021 DOI: 10.1080/07391102.2012.732340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Insulin-degrading enzyme (IDE) gene is one of the type 2 diabetes mellitus susceptibility genes specific to the Han Chinese population. IDE, a zinc-metalloendopeptidase, is a potential target for controlling insulin degradation. Potential lead compounds for IDE inhibition were identified from traditional Chinese medicine (TCM) through virtual screening and evaluation of their pharmacokinetic properties of absorption, distribution, metabolism, excretion, and toxicity. Molecular dynamics (MD) simulation was performed to validate the stability of complexes from docking simulation. The top three TCM compounds, dihydrocaffeic acid, isopraeroside IV, and scopolin, formed stable H-bond interactions with key residue Asn139, and were linked to active pocket residues His108, His112, and Glu189 through zinc. Torsion angle trajectories also indicated some stable interactions for each ligand with IDE. Molecular level analysis revealed that the TCM candidates might affect IDE through competitive binding to the active site and steric hindrance. Structural feature analysis reveals that high amounts of hydroxyl groups and carboxylic moieties contribute to anchor the ligand within the complex. Hence, we suggest the top three TCM compounds as potential inhibitor leads against IDE protein to control insulin degradation for type 2 diabetes mellitus. An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:29.
Collapse
Affiliation(s)
- Kuan-Chung Chen
- a Graduate Institute of Pharmaceutical Chemistry, China Medical University , Taichung , 40402 , Taiwan
| | | | | | | |
Collapse
|
19
|
Abstract
In recent decades, the prevalence of type 2 diabetes in China has increased significantly, underscoring the importance of investigating the etiological mechanisms, including genetic determinants, of the disease in Chinese populations. Numerous loci conferring susceptibility to type 2 diabetes (T2D) have been identified worldwide, with most having been identified in European populations. In terms of ethnic heterogeneity in pathogenesis as well as disease predisposition, it is imperative to explore the specific genetic architecture of T2D in Han Chinese. Replication studies of European-derived susceptibility loci have been performed, validating 11 of 32 loci in Chinese populations. Genetic investigations into heritable traits related to glucose metabolism are expected to provide new insights into the pathogenesis of T2D, and such studies have already inferred some new susceptibility loci. Other than replication studies of European-derived loci, efforts have been made to identify specific susceptibility loci in Chinese populations using methods such as genome-wide association studies. These efforts have identified additional new loci for the disease. Genetic studies can facilitate the prediction of risk for T2D and also promote individualized anti-diabetic treatment. Despite many advances in the field of risk prediction and pharmacogenetics, the pace of clinical application of these findings is rather slow. As a result, more studies into the practical utility of these findings remain necessary.
Collapse
Affiliation(s)
- Weihui Yu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | | | | |
Collapse
|
20
|
Wang C, Zhang R, Lu J, Jiang F, Hu C, Zhou J, Liu F, Zhang F, Qin W, Li M, Ma X, Yan J, Bao Y, Xiang K, Jia W. Phenotypic heterogeneity in Chinese patients with hepatocyte nuclear factor-1β mutations. Diabetes Res Clin Pract 2012; 95:119-24. [PMID: 22051731 DOI: 10.1016/j.diabres.2011.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/30/2011] [Accepted: 10/06/2011] [Indexed: 11/22/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to investigate clinical spectrum of hepatocyte nuclear factor-1β (HNF-1β) mutation in Chinese diabetic patients with renal dysfunction and/or structure abnormalities. MATERIALS AND METHODS A total of 104 diabetic patients with renal structural abnormalities and/or non-diabetic renal dysfunction were recruited and HNF-1β mutation was screened by direct sequencing. RESULTS Three heterozygous missense mutations including c.494G>A (p.R165H), c.662A>T (p.D221V) and c.780G>C (p.E260D) were identified. Progression of diabetes and mild decline of renal function were observed in the mutation carriers during the follow-up. The p.R165H mutation carrier had severe β-cell dysfunction and different extrapancreatic phenotypes. Compared with type 2 diabetes and normoglycemics, the p.R165H mutation carrier had a lower basal C-peptide (0.30, 0.61±0.07 and 0.50±0.04 nmol/L for p.R165H, type 2 diabetes and normoglycemics, respectively) and low values of acute C-peptide response to arginine (0.15, 0.48±0.18 and 0.76±0.08 nmol/L for p.R165H, type 2 diabetes and normoglycemics, respectively). CONCLUSION Patients with the HNF-1β mutation in our population can have different pancreatic and extrapancreatic phenotypes. The exact contributions of mutations to the phenotypes await functional confirmation.
Collapse
Affiliation(s)
- Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Han X, Luo Y, Ren Q, Zhang X, Wang F, Sun X, Zhou X, Ji L. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC MEDICAL GENETICS 2010; 11:81. [PMID: 20509872 PMCID: PMC2896346 DOI: 10.1186/1471-2350-11-81] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 05/28/2010] [Indexed: 12/23/2022]
Abstract
Background Recently, several genome-wide and candidate gene association studies have identified many novel genetic loci for type 2 diabetes (T2D); among these genes, CDKAL1, IGF2BP2, SLC30A8, CDKN2A/B, HHEX, FTO, TCF2, KCNQ1, and WFS1 are the most important. We aimed to determine the effects of these genetic loci associated with T2D in the Chinese Han population of China. Methods Single-nucleotide polymorphisms (SNPs) in or near CDKAL1, IGF2BP2, SLC30A8, CDKN2A/B, HHEX, FTO, TCF2, KCNQ1, and WFS1 genes were genotyped in a case-control Chinese Han sample living in Beijing, China involving 1024 patients with T2D and 1005 control subjects. Results In Chinese Han, we replicated the associations between 7 genetic loci and T2D, with risk allele-specific odds ratios (ORs) as follows: 1.27 (95% CI, 1.11-1.45; p = 0.0008) for CDKAL1-rs10946398, 1.26 (95% CI, 1.08-1.47; p = 0.003) for IGF2BP2-rs4402960, 1.19 (95% CI, 1.04-1.37; p = 0.009) for SLC30A8-rs13266634, 1.22 (95% CI, 1.06-1.41; p = 0.005) for CDKN2A/B-rs10811661, 1.20 (95% CI, 1.01-1.42; p = 0.03) for HHEX-rs5015480, 1.37 (95% CI, 1.19-1.69; p = 1.0 × 10-4) for KCNQ1-rs2237892, and 1.24 (95% CI, 1.01-1.52; p = 0.046) for FTO-rs8050136 after adjustment for age, gender, and body mass index. Not only did an association between WFS1-rs6446482 and early-onset T2D exist in the subgroup analysis, but TCF2-rs7501939 and WFS1-rs6446482 were also confirmed to confer risk for T2D in this meta-analysis. Moreover, the relationship between FTO-rs8050136 and body mass index, together with the effect of CDKAL1-rs10946398 on beta cell function, was also observed in the control individuals. Conclusions Our findings support the important contribution of these genetic loci to susceptibility for T2D in the Chinese Han population in Beijing of China.
Collapse
Affiliation(s)
- Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, No 11, Xizhimen South Street, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM, Chang CC, Chen P, Chen CH, Fann CSJ, Chen YT, Wu JY. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 2010; 6:e1000847. [PMID: 20174558 PMCID: PMC2824763 DOI: 10.1371/journal.pgen.1000847] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 01/18/2010] [Indexed: 12/16/2022] Open
Abstract
To investigate the underlying mechanisms of T2D pathogenesis, we looked for diabetes susceptibility genes that increase the risk of type 2 diabetes (T2D) in a Han Chinese population. A two-stage genome-wide association (GWA) study was conducted, in which 995 patients and 894 controls were genotyped using the Illumina HumanHap550-Duo BeadChip for the first genome scan stage. This was further replicated in 1,803 patients and 1,473 controls in stage 2. We found two loci not previously associated with diabetes susceptibility in and around the genes protein tyrosine phosphatase receptor type D (PTPRD) (P = 8.54×10−10; odds ratio [OR] = 1.57; 95% confidence interval [CI] = 1.36–1.82), and serine racemase (SRR) (P = 3.06×10−9; OR = 1.28; 95% CI = 1.18–1.39). We also confirmed that variants in KCNQ1 were associated with T2D risk, with the strongest signal at rs2237895 (P = 9.65×10−10; OR = 1.29, 95% CI = 1.19–1.40). By identifying two novel genetic susceptibility loci in a Han Chinese population and confirming the involvement of KCNQ1, which was previously reported to be associated with T2D in Japanese and European descent populations, our results may lead to a better understanding of differences in the molecular pathogenesis of T2D among various populations. Type 2 diabetes (T2D) is a complex disease that involves many genes and environmental factors. Genome-wide and candidate-gene association studies have thus far identified at least 19 regions containing genes that may confer a risk for T2D. However, most of these studies were conducted with patients of European descent. We studied Chinese patients with T2D and identified two genes, PTPRD and SRR, that were not previously known to be involved in diabetes and are involved in biological pathways different from those implicated in T2D by previous association reports. PTPRD is a protein tyrosine phosphatase and may affect insulin signaling on its target cells. SRR encodes a serine racemase that synthesizes D-serine from L-serine. Both D-serine (coagonist) and the neurotransmitter glutamate bind to NMDA receptors and trigger excitatory neurotransmission in the brain. Glutamate signaling also regulates insulin and glucagon secretion in pancreatic islets. Thus, SRR and D-serine, in addition to regulating insulin and glucagon secretion, may play a role in the etiology of T2D. Our study suggests that, in different patient populations, different genes may confer risks for diabetes. Our findings may lead to a better understanding of the molecular pathogenesis of T2D.
Collapse
Affiliation(s)
- Fuu-Jen Tsai
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Genetics, Pediatrics and Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Chi-Fan Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
| | - Ching-Chu Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chieh-Hsiang Lu
- Department of Internal Medicine, Endocrinology and Metabolism, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Chwen-Tzuei Chang
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Yuan Wang
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Rong-Hsing Chen
- Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chiung-Fang Shiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Min Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Chun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
| | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yuan-Tsong Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (Y-TC); (J-YW)
| | - Jer-Yuarn Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- National Genotyping Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (Y-TC); (J-YW)
| |
Collapse
|
23
|
Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, Qin W, Hou X, Wang C, Bao Y, Xiang K, Jia W. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 2009; 4:e7643. [PMID: 19862325 PMCID: PMC2763267 DOI: 10.1371/journal.pone.0007643] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 09/28/2009] [Indexed: 11/18/2022] Open
Abstract
Background Recent advance in genetic studies added the confirmed susceptible loci for type 2 diabetes to eighteen. In this study, we attempt to analyze the independent and joint effect of variants from these loci on type 2 diabetes and clinical phenotypes related to glucose metabolism. Methods/Principal Findings Twenty-one single nucleotide polymorphisms (SNPs) from fourteen loci were successfully genotyped in 1,849 subjects with type 2 diabetes and 1,785 subjects with normal glucose regulation. We analyzed the allele and genotype distribution between the cases and controls of these SNPs as well as the joint effects of the susceptible loci on type 2 diabetes risk. The associations between SNPs and type 2 diabetes were examined by logistic regression. The associations between SNPs and quantitative traits were examined by linear regression. The discriminative accuracy of the prediction models was assessed by area under the receiver operating characteristic curves. We confirmed the effects of SNPs from PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 on risk for type 2 diabetes, with odds ratios ranging from 1.114 to 1.406 (P value range from 0.0335 to 1.37E-12). But no significant association was detected between SNPs from WFS1, FTO, JAZF1, TSPAN8-LGR5, THADA, ADAMTS9, NOTCH2-ADAM30 and type 2 diabetes. Analyses on the quantitative traits in the control subjects showed that THADA SNP rs7578597 was association with 2-h insulin during oral glucose tolerance tests (P = 0.0005, empirical P = 0.0090). The joint effect analysis of SNPs from eleven loci showed the individual carrying more risk alleles had a significantly higher risk for type 2 diabetes. And the type 2 diabetes patients with more risk allele tended to have earlier diagnostic ages (P = 0.0006). Conclusions/Significance The current study confirmed the association between PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 and type 2 diabetes. These type 2 diabetes risk loci contributed to the disease additively.
Collapse
Affiliation(s)
- Cheng Hu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-x. [PMID: 19790194 DOI: 10.1002/dmrr.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Abstract
The prevalence of diabetes, especially Type 2 diabetes mellitus (T2DM), is increasing markedly throughout the world, including in China. Because T2DM and its complications are associated with considerable socioeconomic burden and mortality, there is increasing interest in developing strategies to prevent or delay progression of the disease. In recent decades, many researchers have focused on the mechanism of onset of diabetes, as well as examining the benefits of various interventions in subjects with different glucose tolerance status to prevent or delay development of the disease. In the present article, we focus on five areas (epidemiology, early intervention, insulin sensitivity and β-cell function, adipocytokines, and traditional Chinese medicine) to review the progress of research into diabetes in China today. The prevalence of diabetes in China is one of the highest in the world. However, with lifestyle interventions and appropriate pharmacological therapies (including traditional Chinese medicine), T2DM may be prevented, well controlled, or even put into remission. Accurate estimation of insulin secretion and insulin sensitivity, as well as better characterization of the physiological function of adipocytokines, could give us a better understanding of the basic mechanisms underlying the onset of diabetes and could lead to better interventions in people with impaired glucose tolerance and T2DM.
Collapse
Affiliation(s)
- Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | | | | | | | | | | | | | | | | |
Collapse
|