1
|
Batinac T, Batičić L, Kršek A, Knežević D, Marcucci E, Sotošek V, Ćurko-Cofek B. Endothelial Dysfunction and Cardiovascular Disease: Hyperbaric Oxygen Therapy as an Emerging Therapeutic Modality? J Cardiovasc Dev Dis 2024; 11:408. [PMID: 39728298 DOI: 10.3390/jcdd11120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Maintaining the physiological function of the vascular endothelium and endothelial glycocalyx is crucial for the prevention of cardiovascular disease, which is one of the leading causes of morbidity and mortality worldwide. Damage to these structures can lead to atherosclerosis, hypertension, and other cardiovascular problems, especially in individuals with risk factors such as diabetes and obesity. Endothelial dysfunction is associated with ischemic disease and has a negative impact on overall cardiovascular health. The aim of this review was to comprehensively summarize the crucial role of the vascular endothelium and glycocalyx in cardiovascular health and associated thrombo-inflammatory conditions. It highlights how endothelial dysfunction, influenced by factors such as diabetes, chronic kidney disease, and obesity, leads to adverse cardiovascular outcomes, including heart failure. Recent evidence suggests that hyperbaric oxygen therapy (HBOT) may offer therapeutic benefits in the treatment of cardiovascular risk factors and disease. This review presents the current evidence on the mechanisms by which HBOT promotes angiogenesis, shows antimicrobial and immunomodulatory effects, enhances antioxidant defenses, and stimulates stem cell activity. The latest findings on important topics will be presented, including the effects of HBOT on endothelial dysfunction, cardiac function, atherosclerosis, plaque stability, and endothelial integrity. In addition, the role of HBOT in alleviating cardiovascular risk factors such as hypertension, aging, obesity, and glucose metabolism regulation is discussed, along with its impact on inflammation in cardiovascular disease and its potential benefit in ischemia-reperfusion injury. While HBOT demonstrates significant therapeutic potential, the review also addresses potential risks associated with excessive oxidative stress and oxygen toxicity. By combining information on the molecular mechanisms of HBOT and its effects on the maintenance of vascular homeostasis, this review provides valuable insights into the development of innovative therapeutic strategies aimed at protecting and restoring endothelial function to prevent and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Antea Kršek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Emanuela Marcucci
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Underwater and Hyperbaric Medicine, Clinical Hospital Center Rijeka, Tome Strižića 3, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Zhang K, Yin Z, Chen F, Cao Z, Guan J, Chen C, Wang Y, Fan G. Omics-based pharmacological evaluation reveals Yuanhu Zhitong oral liquid ameliorates arthritis by regulating PKC/ERK/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118289. [PMID: 38718892 DOI: 10.1016/j.jep.2024.118289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Successful use of herbal medicine in the treatment of rheumatoid arthritis (RA) creates opportunities for alternative therapies. Yuanhu Zhitong oral liquid (YZOL) is an herbal preparation known for its potent analgesic and anti-inflammatory properties in traditional use. However, the pharmacological mechanism of YZOL for treating RA remains unclear. AIM OF THE STUDY The aim of this study was to evaluate the efficacy of YZOL in the treatment of RA and to explore its potential mechanisms through omics analysis. MATERIALS AND METHODS Type II collagen was used to induce an arthritis rat model. The effects of YZOL on paw swelling, inflammatory cytokines, oxidative stress, and histopathological changes were systematically investigated. A pathway-driven transcriptomic analysis was performed to identify key signaling pathways associated with YZOL therapy. The key alterations were validated by qRT-PCR, Western blot, and immunohistochemistry assays. RESULTS YZOL significantly attenuated arthritis progression, reduced paw swelling rate, and lowered arthritis score in CIA rats. YZOL also inhibited systemic inflammation and associated oxidative stress during RA. Transcriptomic analysis identified 341 genes with significantly altered expression following YZOL treatment. These genes were enriched in inflammation-related pathways, particularly in the NF-κB and MAPK signaling pathways. In addition, we discovered that YZOL can alleviate inflammation in the local synovial tissue. The effect of YZOL was confirmed by the suppression of PKC/ERK/NF-κB p65 signaling at systemic and local levels. CONCLUSIONS This study provides novel evidence that YZOL treatment ameliorates RA by suppressing the PKC/ERK/NF-κB pathway, suggesting its potential as an alternative therapy for RA.
Collapse
Affiliation(s)
- Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhaorui Yin
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Zhiming Cao
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China.
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China.
| | - Chengyu Chen
- Jiaheng Pharmaceutical Technology Co., Ltd., Zhuhai, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
3
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Anti-obesity and anti-diabetic effects of L-citrulline are sex-dependent. Life Sci 2024; 339:122432. [PMID: 38237764 DOI: 10.1016/j.lfs.2024.122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
AIMS Anti-diabetic and anti-obesity effects of L-citrulline (Cit) have been reported in male rats. This study determined sex differences in response to Cit in Wistar rats. MAIN METHODS Type 2 diabetes (T2D) was induced using a high-fat diet followed by low-dose of streptozotocin (30 mg/kg) injection. Male and female Wistar rats were divided into 4 groups (n = 6/group): Control, control+Cit, T2D, and T2D + Cit. Cit (4 g/L in drinking water) was administered for 8 weeks. Obesity indices were recorded, serum fasting glucose and lipid profile were measured, and glucose and pyruvate tolerance tests were performed during the Cit intervention. White (WAT) and brown (BAT) adipose tissues were weighted, and the adiposity index was calculated at the end of the study. KEY FINDINGS Cit was more effective in decreasing fasting glucose (18 % vs. 11 %, P = 0.0100), triglyceride (20 % vs. 14 %, P = 0.0173), and total cholesterol (16 % vs. 11 %, P = 0.0200) as well as decreasing gluconeogenesis and improving glucose tolerance, in females compared to male rats with T2D. Following Cit administration, decreases in WAT weight (16 % vs. 14 % for gonadal, 21 % vs. 16 % for inguinal, and 18 % vs. 13 % for retroperitoneal weight, all P < 0.0001) and increases in BAT weight (58 % vs. 19 %, for interscapular and 10 % vs. 7 % for axillary, all P < 0.0001) were higher in females than male rats with T2D. The decrease in adiposity index was also higher (11 % vs. 9 %, P = 0.0007) in females. SIGNIFICANCE The anti-obesity and anti-diabetic effects of Cit in rats are sex-dependent, with Cit being more effective in female than male rats.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Vedika R, Sharma P, Reddy A. Signature precursor and mature microRNAs in cervical ripening during gestational diabetes mellitus lead to pre-term labor and other impediments in future. J Diabetes Metab Disord 2023; 22:945-965. [PMID: 37975145 PMCID: PMC10638342 DOI: 10.1007/s40200-023-01232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/29/2023] [Indexed: 11/19/2023]
Abstract
Gestational diabetes mellitus (GDM) is a pathological condition in which the placenta releases a hormone called human placental lactogen that prevents maternal insulin uptake. GDM is characterised by varying degrees of carbohydrate intolerance and is first identified during pregnancy. Around 5-17% of pregnancies are GDM pregnancies. Older or obese women have a higher risk of developing GDM during gestation. Hyperglycemia is a classic manifestation of GDM and leads to alterations in eNOS and iNOS expression and subsequently causes ROS and RNS overproduction. ROS and RNS play an important role in maintaining normal physiology, when present in low concentrations. Increased concentrations of ROS is harmful and can cause cellular and tissue damage. Oxidative stress is defined as an imbalance between pro-oxidant and antioxidant molecules that manifests due to hyperglycemia. miRNAs are short, non-coding RNAs that play a critical role in regulating gene expression. Studies have shown that the placenta expresses more than 500 miRNAs, which play a crucial role in trophoblast division, movement, and apoptosis. Latest research has revealed that hyperglycemic conditions and increased oxidative stress, characteristic of GDM, can lead to the dysregulation of miRNAs. The placenta also releases miRNAs into the maternal circulation. The secreted miRNAs are encapsulated in exosomes or vesicles. These exosomes interact with tissues and organs at distant sites, releasing their cargo intracellularly. This crosstalk between hyperglycemia, ROS and miRNA expression in GDM has detrimental effects on both foetal and maternal health. One of the complications of GDM is preterm labour. GDM induced iNOS expression has been implicated in cervical ripening, which in turn causes preterm birth. This article focuses on the speculations of oxidative and nitrative stress markers that lead to detrimental effects in GDM. We have also envisaged the role of non-coding miRNA interactions in regulating gene expression for oxidative damage. Graphical Abstract Holistic view of miRNA in GDM. I)(A) Placenta as a metabolic organ that provides the foetus with nutrients, oxygen and hormones to maintain pregnancy. Human placental lactogen (hPL) is one such hormone that is released into maternal circulation. hPL is known to induce insulin resistance. (B) ß-cell dysfunction leads to reduced glucose sensing and insulin production. Insulin resistance, a characteristic of GDM, exacerbates insulin ß cell dysfunction leading to maternal hyperglycemia. Hyperglycemia leads to increased ROS and RNS production through several mechanisms. Consequently, GDM is characterised by increased oxidative and nitrative stress.II)Exposure to maternal hyperglycemia causes increased ROS and RNS production in trophoblast cells. Oxidative stress caused by hyperglycemia may lead to eNOS uncoupling, causing eNOS to behave as a superoxide producing enzyme. iNOS expression in trophoblast cells leads to increased NO production. iNOS-derived NO reacts with ROS to produce RNS, thereby increasing nitrosative stress. Expression of antioxidant defences are reduced. Hyperglycemia and oxidative stress may alter the expression of some miRNAs. Some miRNAs are upregulated while others are downregulated. Some miRNAs are secreted into maternal circulation in the form of exosomes. Oxidative stress markers, nitrative stress markers and circulating miRNAs are found to be increased in maternal circulation.
Collapse
Affiliation(s)
- R. Vedika
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
| | - Priyanshy Sharma
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
| | - Amala Reddy
- Animal cell culture laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamil Nadu India
- Department of Biotechnology, SRMIST, Kattankulathur, Kancheepuram 603203 India
| |
Collapse
|
5
|
He A, Guo Y, Xu Z, Yan J, Xie L, Li Y, Lv D, Luo M. Hypoglycaemia aggravates impaired endothelial-dependent vasodilation in diabetes by suppressing endothelial nitric oxide synthase activity and stimulating inducible nitric oxide synthase expression. Microvasc Res 2023; 146:104468. [PMID: 36513147 DOI: 10.1016/j.mvr.2022.104468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Diabetes exacerbates vascular injury by triggering endothelial dysfunction. Endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) both play major roles in endothelial dysfunction. However, effects of hypoglycaemia, the main complication of the insulin therapy to the glycemic control in diabetes, on eNOS activity and iNOS expression, and underlying mechanisms in diabetes remain unknown. Hence, we aimed to determine the effects of hypoglycaemia on eNOS activity and iNOS expression in different arterial beds of diabetic rats. METHODS Sprague-Dawley rats were subjected to Streptozotocin (STZ) combined with high fat diet (HFD) to induce diabetes and then received insulin injection to attain acute and recurrent hypoglycaemia. Immunoblotting was used to analyse the phosphorylation and O-glycosylation status of eNOS and iNOS level from thoracic aorta and mesenteric artery tissue. Indicators of oxidative stress from plasm were determined, and endothelial-dependent vasodilation was detected via wire myograph system. RESULTS Hypoglycaemia was associated with a marked increase in eNOS O-GlcNAcylation and decrease in Serine (Ser)-1177 phosphorylation from thoracic aortas and mesenteric arteries. Moreover, hypoglycaemia resulted in elevated phosphorylation of eNOS at Threonine (Thr)-495 site in mesenteric arteries. Besides, changes in these post-translational modifications were associated with increased O-GlcNAc transferase (OGT), decreased phosphorylation of Akt at Ser-473, and increased protein kinase C α subunit (PKCα). iNOS expression was induced in hypoglycaemia. Furthermore, endothelial-dependent vasodilation was impaired under insulin-induced hypoglycaemia, and further in recurrent hypoglycaemia. CONCLUSIONS Conclusively, these findings strongly indicate that hypoglycaemia-dependent vascular dysfunction in diabetes is mediated through altered eNOS activity and iNOS expression. Therefore, this implies that therapeutic modulation of eNOS activity and iNOS expression in diabetics under intensive glucose control may prevent and treat adverse cardiovascular events.
Collapse
Affiliation(s)
- An He
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhixin Xu
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianghong Yan
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Lingyun Xie
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanjing Li
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingyi Lv
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Minghao Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Wang H, Xu Y, Xu A, Wang X, Cheng L, Lee S, Tse G, Li G, Liu T, Fu H. PKCβ/NF-κB pathway in diabetic atrial remodeling. J Physiol Biochem 2020; 76:637-653. [PMID: 33085045 DOI: 10.1007/s13105-020-00769-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Atrial remodeling in diabetes is partially attributed to NF-κB/TGF-β signal transduction pathway activation. We examined whether the hyperglycemia-induced increased expression of NF-κB/TGF-β was dependent upon protein kinase C-β (PKCβ) and tested the hypothesis that selective inhibition of PKCβ using ruboxistaurin (RBX) can reduce NF-κB/TGF-β expression and inhibit abnormal atrial remodeling in streptozotocin (STZ)-induced diabetic rats. The effects of PKCβ inhibition on NF-κB/TGF-β signal transduction pathway-mediated atrial remodeling were investigated in STZ-induced diabetic rats. Mouse atrial cardiomyocytes (HL-1 cells) were cultured in low- or high-glucose or mannitol conditions in the presence or absence of small interference RNA that targeted PKCβ. PKCβ inhibition using ruboxistaurin (RBX, 1 mg/kg/day) decreased the expression of NF-κBp65, p-IκB, P38MARK, TNF-α, TGF-β, Cav1.2, and NCX proteins and inducibility of atrial fibrillation (AF) in STZ-induced diabetic rats. Exposure of cardiomyocytes to high-glucose condition activated PKCβ and increased NF-κB/TGF-β expression. Suppression of PKCβ expression by small interference RNA decreased high-glucose-induced NF-κB and extracellular signal-related kinase activation in HL-1 cells. Pharmacological inhibition of PKCβ is an effective method to reduce AF incidence in diabetic rat models by preventing NF-κB/TGF-β-mediated atrial remodeling.
Collapse
Affiliation(s)
- Haili Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
- Beijing Capital International Airport Hospital, Beijing, People's Republic of China
| | - Yuanyuan Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Aiqing Xu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Xinghua Wang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Lijun Cheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Sharen Lee
- Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Gary Tse
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Huaying Fu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
7
|
Curcumin, Alone or in Combination with Aminoguanidine, Increases Antioxidant Defenses and Glycation Product Detoxification in Streptozotocin-Diabetic Rats: A Therapeutic Strategy to Mitigate Glycoxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1036360. [PMID: 32566072 PMCID: PMC7260652 DOI: 10.1155/2020/1036360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022]
Abstract
Both oxidative stress and the exacerbated generation of advanced glycation end products (AGEs) have crucial roles in the onset and progression of diabetic complications. Curcumin has antioxidant and antidiabetic properties; its combination with compounds capable of preventing the advanced glycation events, such as aminoguanidine, is an interesting therapeutic option to counteract diabetic complications. This study is aimed at investigating the effects of treatments with curcumin or aminoguanidine, alone or in combination, on metabolic alterations in streptozotocin-diabetic rats; the focus was mainly on the potential of these bioactive compounds to oppose the glycoxidative stress. Curcumin (90 mg/kg) or aminoguanidine (50 and 100 mg/kg), alone or in combination, slightly decreased glycemia and the biomarkers of early protein glycation, but markedly decreased AGE levels (biomarkers of advanced glycation) and oxidative damage biomarkers in the plasma, liver, and kidney of diabetic rats. Some novel insights about the in vivo effects of these bioactive compounds are centered on the triggering of cytoprotective machinery. The treatments with curcumin and/or aminoguanidine increased the activities of the antioxidant enzymes (paraoxonase 1, superoxide dismutase, and catalase) and the levels of AGE detoxification system components (AGE-R1 receptor and glyoxalase 1). In addition, combination therapy between curcumin and aminoguanidine effectively prevented dyslipidemia in diabetic rats. These findings demonstrate the combination of curcumin (natural antioxidant) and aminoguanidine (prototype therapeutic agent with anti-AGE activity) as a potential complementary therapeutic option for use with antihyperglycemic agents, which may aggregate beneficial effects against diabetic complications.
Collapse
|
8
|
Feng SYS, Hollis JH, Samarasinghe T, Phillips DJ, Rao S, Yu VYH, Walker AM. Endotoxin-induced cerebral pathophysiology: differences between fetus and newborn. Physiol Rep 2019; 7:e13973. [PMID: 30785235 PMCID: PMC6381816 DOI: 10.14814/phy2.13973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
As the comparative pathophysiology of perinatal infection in the fetus and newborn is uncertain, this study contrasted the cerebral effects of endotoxemia in conscious fetal sheep and newborn lambs. Responses to intravenous bacterial endotoxin (lipopolysaccharide, LPS) or normal saline were studied on three consecutive days in fetal sheep (LPS 1 μg/kg, n = 5; normal saline n = 5) and newborn lambs (LPS 2 μg/kg, n = 10; normal saline n = 5). Cerebro-vascular function was assessed by monitoring cerebral blood flow (CBF) and cerebral vascular resistance (CVR) over 12 h each day, and inflammatory responses were assessed by plasma TNF alpha (TNF-α), nitrate and nitrite concentrations. Brain injury was quantified by counting both resting and active macrophages in the caudate nucleus and periventricular white matter (PVWM). An acute cerebral vasoconstriction (within 1 h of LPS injection) occurred in both the fetus (ΔCVR +53%) and newborn (ΔCVR +63%); subsequently prolonged cerebral vasodilatation occurred in the fetus (ΔCVR -33%) in association with double plasma nitrate/nitrite concentrations, but not in the newborn. Abundant infiltration of activated macrophages was observed in both CN and PVWM at each age, with the extent being 2-3 times greater in the fetus (P < 0.001). In conclusion, while the fetus and newborn experience a similar acute disruption of the cerebral circulation after LPS, the fetus suffers a more prolonged circulatory disruption, a greater infiltration of activated macrophages, and an exaggerated susceptibility to brain injury.
Collapse
Affiliation(s)
- Susan Y. S. Feng
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Neonatal DirectorateKing Edward Memorial HospitalPerth Children's HospitalSubiacoWestern AustraliaAustralia
| | - Jacob H. Hollis
- Department of PhysiologyMonash UniversityClaytonVictoriaAustralia
| | | | - David J. Phillips
- Academic & Medical PortfolioEpworth HealthCareRichmondVictoriaAustralia
| | - Shripada Rao
- Neonatal DirectorateKing Edward Memorial HospitalPerth Children's HospitalSubiacoWestern AustraliaAustralia
| | - Victor Y. H. Yu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Monash NewbornMonash Medical CentreClaytonVictoriaAustralia
| | - Adrian M. Walker
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
| |
Collapse
|
9
|
Resanovic I, Gluvic Z, Zaric B, Sudar-Milovanovic E, Jovanovic A, Milacic D, Isakovic R, Isenovic ER. Early Effects of Hyperbaric Oxygen on Inducible Nitric Oxide Synthase Activity/Expression in Lymphocytes of Type 1 Diabetes Patients: A Prospective Pilot Study. Int J Endocrinol 2019; 2019:2328505. [PMID: 30755771 PMCID: PMC6348926 DOI: 10.1155/2019/2328505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 10/15/2018] [Indexed: 02/05/2023] Open
Abstract
This study aimed at examining the early effects of hyperbaric oxygen therapy (HBOT) on inducible nitric oxide synthase (iNOS) activity/expression in lymphocytes of type 1 diabetes mellitus (T1DM) patients. A group of 19 patients (mean age: 63 ± 2.1) with T1DM and with the peripheral arterial disease were included in this study. Patients were exposed to 10 sessions of HBOT in the duration of 1 h to 100% oxygen inhalation at 2.4 ATA. Blood samples were collected for the plasma C-reactive protein (CRP), plasma free fatty acid (FFA), serum nitrite/nitrate, and serum arginase activity measurements. Expression of iNOS and phosphorylation of p65 subunit of nuclear factor-κB (NFκB-p65), extracellular-regulated kinases 1/2 (ERK1/2), and protein kinase B (Akt) were examined in lymphocyte lysates by Western blot. After exposure to HBOT, plasma CRP and FFA were significantly decreased (p < 0.001). Protein expression of iNOS and serum nitrite/nitrate levels were decreased (p < 0.01), while serum arginase activity was increased (p < 0.05) versus before exposure to HBOT. Increased phosphorylation of NFκB-p65 at Ser536 (p < 0.05) and decreased level of NFκB-p65 protein (p < 0.001) in lymphocytes of T1DM patients were observed after HBOT. Decreased phosphorylation of ERK1/2 (p < 0.05) and Akt (p < 0.05) was detected after HBOT. Our results indicate that exposure to HBO decreased iNOS activity/expression via decreasing phosphorylation of ERK1/2 and Akt followed by decreased activity of NFκB.
Collapse
Affiliation(s)
- Ivana Resanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidarka Zaric
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Emina Sudar-Milovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Aleksandra Jovanovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| | - Davorka Milacic
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Radmilo Isakovic
- Department of Hyperbaric Medicine, Zemun Clinical Hospital, Belgrade, Serbia
| | - Esma R. Isenovic
- Institute of Nuclear Sciences Vinca, University of Belgrade, Laboratory of Radiobiology and Molecular Genetics, Belgrade, Serbia
| |
Collapse
|
10
|
Zhang ML, Zheng B, Tong F, Yang Z, Wang ZB, Yang BM, Sun Y, Zhang XH, Zhao YL, Wen JK. iNOS-derived peroxynitrite mediates high glucose-induced inflammatory gene expression in vascular smooth muscle cells through promoting KLF5 expression and nitration. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2821-2834. [PMID: 28711598 DOI: 10.1016/j.bbadis.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/19/2017] [Accepted: 07/11/2017] [Indexed: 12/24/2022]
Abstract
Inducible NO synthase (iNOS) expression and peroxynitrite formation are significantly increased in diabetic vascular tissues. Transcription factor KLF5 activates iNOS gene transcription and is involved in vascular inflammatory injury and remodeling. However, mutual regulation between KLF5, iNOS and peroxynitrite in diabetic vascular inflammation, as well as the underlying mechanisms, remain largely unknown. In this study, we found a marked increase in KLF5 and iNOS expression in vascular smooth muscle cells (VSMC) of diabetic patients. High glucose-induced expression of KLF5 and iNOS was also observed in cultured mouse VSMCs. Further investigation showed that high glucose induced KLF5 nitration by iNOS-mediated peroxynitrite generation, and nitrated KLF5 increased its interaction with NF-κB p50 and thus cooperatively activated the expression of inflammatory cytokines TNF-α and IL-1β. Furthermore, we showed that the VSMC-specific knockout of KLF5 dramatically reduced inflammatory cytokine expression in the vascular tissues of diabetic mice. Moreover, 17β-estradiol (E2) inhibited high glucose-mediated effects in VSMCs, and in the response to E2, estrogen receptor (ER) α competed with KLF5 for binding to NF-κB p50, which in turn leads to the suppression of inflammatory gene expression in VSMCs. Together, the present findings were the first to show that KLF5 expression and nitration by iNOS-mediated peroxynitrite are necessary for the induction of TNF-α and IL-1β expression in VSMCs of diabetic vascular tissues.
Collapse
Affiliation(s)
- Man-Li Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Fei Tong
- Department of Emergency Medicine, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhan Yang
- Department of Science and Technology, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhi-Bo Wang
- Department of Vascular Surgery, The second hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Bao-Ming Yang
- Department of Hepatobiliary Surgery, The fourth hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yan Sun
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi-Lin Zhao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
11
|
Rimessi A, Pavan C, Ioannidi E, Nigro F, Morganti C, Brugnoli A, Longo F, Gardin C, Ferroni L, Morari M, Vindigni V, Zavan B, Pinton P. Protein Kinase C β: a New Target Therapy to Prevent the Long-Term Atypical Antipsychotic-Induced Weight Gain. Neuropsychopharmacology 2017; 42:1491-1501. [PMID: 28128334 PMCID: PMC5436118 DOI: 10.1038/npp.2017.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/03/2017] [Accepted: 01/21/2017] [Indexed: 12/21/2022]
Abstract
Antipsychotic drugs are currently used in clinical practice for a variety of mental disorders. Among them, clozapine is the most effective medication for treatment-resistant schizophrenia and is most helpful in controlling aggression and the suicidal behavior in schizophrenia and schizoaffective disorder. Although clozapine is associated with a low likelihood of extrapyramidal symptoms and other neurological side effects, it is well known for the weight gain and metabolic side effects, which expose the patient to a greater risk of cardiovascular disorders and premature death, as well as psychosocial issues, leading to non-adherence to therapy. The mechanisms underlying these iatrogenic metabolic disorders are still controversial. We have therefore investigated the in vivo effects of the selective PKCβ inhibitor, ruboxistaurin (LY-333531), in a preclinical model of long-term clozapine-induced weight gain. Cell biology, biochemistry, and behavioral tests have been performed in wild-type and PKCβ knockout mice to investigate the contribution of endogenous PKCβ and its pharmacological inhibition to the psychomotor effects of clozapine. Finally, we also shed light on a novel aspect of the mechanism underlying the clozapine-induced weight gain, demonstrating that the clozapine-dependent PKCβ activation promotes the inhibition of the lipid droplet-selective autophagy process. This paves the way to new therapeutic approaches to this serious complication of clozapine therapy.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Chiara Pavan
- Unit of Psychiatry, Department of Neurosciences NPSRR, University of Padua, Padua, Italy
| | - Elli Ioannidi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Federica Nigro
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Claudia Morganti
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Brugnoli
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Francesco Longo
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Chiara Gardin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Letizia Ferroni
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, Neuroscience Center and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Vincenzo Vindigni
- Unit of Plastic Surgery, Department of Neurosciences NPSRR, University of Padua, Padua, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy,Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70 (c/o CUBO), Ferrara 44121, Italy, Tel: +0039 0532455802, Fax: +0039 0532455351, E-mail:
| |
Collapse
|
12
|
Wang Y, Zhou Q, Wu B, Zhou H, Zhang X, Jiang W, Wang L, Wang A. Propofol induces excessive vasodilation of aortic rings by inhibiting protein kinase Cβ2 and θ in spontaneously hypertensive rats. Br J Pharmacol 2017; 174:1984-2000. [PMID: 28369981 DOI: 10.1111/bph.13797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/21/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Exaggerated hypotension following administration of propofol is strongly predicted in patients with hypertension. Increased PKCs play a crucial role in regulating vascular tone. We studied whether propofol induces vasodilation by inhibiting increased PKC activity in spontaneously hypertensive rats (SHRs) and, if so, whether contractile Ca2+ sensitization pathways and filamentous-globular (F/G) actin dynamics were involved. EXPERIMENTAL APPROACH Rings of thoracic aorta, denuded of endothelium, from normotensive Wistar-Kyoto (WKY) rats and SHR were prepared for functional studies. Expression and activity of PKCs in vascular smooth muscle (VSM) cells were determined by Western blot analysis and elisa respectively. Phosphorylation of the key proteins in PKC Ca2+ sensitization pathways was also examined. Actin polymerization was evaluated by differential centrifugation to probe G- and F-actin content. KEY RESULTS Basal expression and activity of PKCβ2 and PKCθ were increased in aortic VSMs of SHR, compared with those from WKY rats. Vasorelaxation of SHR aortas by propofol was markedly attenuated by LY333531 (a specific PKCβ inhibitor) or the PKCθ pseudo-substrate inhibitor. Furthermore, noradrenaline-enhanced phosphorylation, and the translocation of PKCβ2 and PKCθ, was inhibited by propofol, with decreased actin polymerization and PKCβ2-mediated Ca2+ sensitization pathway in SHR aortas. CONCLUSION AND IMPLICATIONS Propofol suppressed increased PKCβ2 and PKCθ activity, which was partly responsible for exaggerated vasodilation in SHR. This suppression results in inhibition of actin polymerization, as well as that of the PKCβ2- but not PKCθ-mediated, Ca2+ sensitization pathway. These data provide a novel explanation for the unwanted side effects of propofol.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Quanhong Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bin Wu
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huixuan Zhou
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoli Zhang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Jiang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Li Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
13
|
Singh J, Chaudhari BP, Kakkar P. Baicalin and chrysin mixture imparts cyto-protection against methylglyoxal induced cytotoxicity and diabetic tubular injury by modulating RAGE, oxidative stress and inflammation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:67-75. [PMID: 28135651 DOI: 10.1016/j.etap.2017.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Protective effect of mixture of flavonoids baicalin and chrysin (BCH) was studied against methylglyoxal (MG, a precursor of AGEs) induced cytotoxicity in NRK 52E kidney epithelial cells. Flow cytometry and microscopic analysis showed increased ROS generation, compromised antioxidant status, depolarization of mitochondria and apoptosis in MG stressed cells which were significantly transformed (p≤0.01) during BCH co-treatment. In vivo studies in streptozotocin induced diabetic rats increased protein levels of iNOS, protein kinase C (PKC) and decreased IκB which was modulated by oral BCH treatment (75mg baicalin and 10mg chrysin/kg b.wt.). Increased levels of AGEs and their receptor proteins (RAGE) in diabetic rats were reduced significantly (p≤0.01) in BCH treated group. Renal tubular injuries and deranged kidney function were significantly improved in BCH treated animals. The results indicate that the protection accorded by BCH through its antioxidant and anti-inflammatory effects can be explored for management of diabetic nephropathy.
Collapse
Affiliation(s)
- Jyotsna Singh
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Bhushan P Chaudhari
- Central Pathology Lab, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India
| | - Poonam Kakkar
- Herbal Research Section, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India.
| |
Collapse
|
14
|
Sun Z, Wu X, Li W, Peng H, Shen X, Ma L, Liu H, Li H. RhoA/rock signaling mediates peroxynitrite-induced functional impairment of Rat coronary vessels. BMC Cardiovasc Disord 2016; 16:193. [PMID: 27724862 PMCID: PMC5057502 DOI: 10.1186/s12872-016-0372-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/28/2016] [Indexed: 01/03/2023] Open
Abstract
Background Diabetes-induced vascular dysfunction may arise from reduced nitric oxide (NO) availability, following interaction with superoxide to form peroxynitrite. Peroxynitrite can induce formation of 3-nitrotyrosine-modified proteins. RhoA/ROCK signaling is also involved in diabetes-induced vascular dysfunction. The study aimed to investigate possible links between Rho/ROCK signaling, hyperglycemia, and peroxynitrite in small coronary arteries. Methods Rat small coronary arteries were exposed to normal (NG; 5.5 mM) or high (HG; 23 mM) D-glucose. Vascular ring constriction to 3 mM 4-aminopyridine and dilation to 1 μM forskolin were measured. Protein expression (immunohistochemistry and western blot), mRNA expression (real-time PCR), and protein activity (luminescence-based G-LISA and kinase activity spectroscopy assays) of RhoA, ROCK1, and ROCK2 were determined. Results Vascular ring constriction and dilation were smaller in the HG group than in the NG group (P < 0.05); inhibition of RhoA or ROCK partially reversed the effects of HG. Peroxynitrite impaired vascular ring constriction/dilation; this was partially reversed by inhibition of RhoA or ROCK. Protein and mRNA expressions of RhoA, ROCK1, and ROCK2 were higher under HG than NG (P < 0.05). This HG-induced upregulation was attenuated by inhibition of RhoA or ROCK (P < 0.05). HG increased RhoA, ROCK1, and ROCK2 activity (P < 0.05). Peroxynitrite also enhanced RhoA, ROCK1, and ROCK2 activity; these actions were partially inhibited by 100 μM urate (peroxynitrite scavenger). Exogenous peroxynitrite had no effect on the expression of the voltage-dependent K+ channels 1.2 and 1.5. Conclusions Peroxynitrite-induced coronary vascular dysfunction may be mediated, at least in part, through increased expressions and activities of RhoA, ROCK1, and ROCK2.
Collapse
Affiliation(s)
- Zhijun Sun
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xing Wu
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Weiping Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Hui Peng
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Xuhua Shen
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Lu Ma
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Huirong Liu
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, People's Republic of China
| | - Hongwei Li
- Department of Heart Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
15
|
Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4:E24. [PMID: 28933404 PMCID: PMC5456287 DOI: 10.3390/diseases4030024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| | - Séverine Sigrist
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| |
Collapse
|
16
|
Uncoupling of Vascular Endothelial Growth Factor (VEGF) and Inducible Nitric Oxide Synthase (iNOS) in Gingival Tissue of Type 2 Diabetic Patients. Inflammation 2015; 39:632-42. [DOI: 10.1007/s10753-015-0288-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Murfitt L, Whiteley G, Iqbal MM, Kitmitto A. Targeting caveolin-3 for the treatment of diabetic cardiomyopathy. Pharmacol Ther 2015; 151:50-71. [PMID: 25779609 DOI: 10.1016/j.pharmthera.2015.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
Diabetes is a global health problem with more than 550 million people predicted to be diabetic by 2030. A major complication of diabetes is cardiovascular disease, which accounts for over two-thirds of mortality and morbidity in diabetic patients. This increased risk has led to the definition of a diabetic cardiomyopathy phenotype characterised by early left ventricular dysfunction with normal ejection fraction. Here we review the aetiology of diabetic cardiomyopathy and explore the involvement of the protein caveolin-3 (Cav3). Cav3 forms part of a complex mechanism regulating insulin signalling and glucose uptake, processes that are impaired in diabetes. Further, Cav3 is key for stabilisation and trafficking of cardiac ion channels to the plasma membrane and so contributes to the cardiac action potential shape and duration. In addition, Cav3 has direct and indirect interactions with proteins involved in excitation-contraction coupling and so has the potential to influence cardiac contractility. Significantly, both impaired contractility and rhythm disturbances are hallmarks of diabetic cardiomyopathy. We review here how changes to Cav3 expression levels and altered relationships with interacting partners may be contributory factors to several of the pathological features identified in diabetic cardiomyopathy. Finally, the review concludes by considering ways in which levels of Cav3 may be manipulated in order to develop novel therapeutic approaches for treating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Lucy Murfitt
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Gareth Whiteley
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Mohammad M Iqbal
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
18
|
Khanna S, Singh GB, Khullar M. Nitric oxide synthases and diabetic cardiomyopathy. Nitric Oxide 2014; 43:29-34. [PMID: 25153033 DOI: 10.1016/j.niox.2014.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/22/2014] [Accepted: 08/14/2014] [Indexed: 01/06/2023]
Abstract
Cardiovascular complications associated with diabetes significantly contribute to high mortality and morbidity worldwide. The pathophysiology of diabetic cardiomyopathy (DCM), although extensively researched upon, is partially understood. Impairment in various signaling pathways including nitric oxide (NO) signaling has been implicated in the pathogenesis of diabetes induced myocardial damage. Nitric oxide synthases (NOS), the enzymes responsible for NO generation, play an important role in various physiological processes. Altered expression and activity of NOS have been implicated in cardiovascular diseases, however, the role of NOS and their regulation in the pathogenesis of DCM remain poorly understood. In the present review, we focus on the role of myocardial NOS in the development of DCM. Since epigenetic modifications play an important role in regulation of gene expression, this review also describes the epigenetic regulation of NOS.
Collapse
Affiliation(s)
- Sanskriti Khanna
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gurinder Bir Singh
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
19
|
Lin G, Brownsey RW, MacLeod KM. Complex regulation of PKCβ2 and PDK-1/AKT by ROCK2 in diabetic heart. PLoS One 2014; 9:e86520. [PMID: 24466133 PMCID: PMC3896488 DOI: 10.1371/journal.pone.0086520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/15/2013] [Indexed: 01/13/2023] Open
Abstract
Objectives The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling. Methods Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy. Results Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts. Conclusion This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.
Collapse
Affiliation(s)
- Guorong Lin
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Roger W. Brownsey
- Dept. of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Kathleen M. MacLeod
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
20
|
Yu X, Zhang Q, Cui W, Zeng Z, Yang W, Zhang C, Zhao H, Gao W, Wang X, Luo D. Low molecular weight fucoidan alleviates cardiac dysfunction in diabetic Goto-Kakizaki rats by reducing oxidative stress and cardiomyocyte apoptosis. J Diabetes Res 2014; 2014:420929. [PMID: 25525607 PMCID: PMC4267220 DOI: 10.1155/2014/420929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/29/2014] [Indexed: 01/09/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by cardiac dysfunction and cardiomyocyte apoptosis. Oxidative stress is suggested to be the major contributor to the development of DCM. This study was intended to evaluate the protective effect of low molecular weight fucoidan (LMWF) against cardiac dysfunction in diabetic rats. Type 2 diabetic goto-kakizaki rats were untreated or treated with LMWF (50 and 100 mg/kg/day) for three months. The establishment of DCM model and the effects of LMWF on cardiac function were evaluated by echocardiography and isolated heart perfusion. Ventricle staining with H-E or Sirius Red was performed to investigate the structural changes in myocardium. Functional evaluation demonstrated that LMWF has a beneficial effect on DCM by enhancing myocardial contractility and mitigating cardiac fibrosis. Additionally, LMWF exerted significant inhibitory effects on the reactive oxygen species production and myocyte apoptosis in diabetic hearts. The depressed activity of superoxide dismutase in diabetic heart was also improved by intervention with LMWF. Moreover, LMWF robustly inhibited the enhanced expression of protein kinase C β, an important contributor to oxidative stress, in diabetic heart and high glucose-treated cardiomyocytes. In conclusion, LMWF possesses a protective effect against DCM through ameliorations of PKCβ-mediated oxidative stress and subsequent cardiomyocyte apoptosis in diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Line
- Collagen/metabolism
- Diabetes Mellitus, Type 2/diagnosis
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetic Cardiomyopathies/diagnosis
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/prevention & control
- Disease Models, Animal
- Fibrosis
- Male
- Molecular Weight
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oxidative Stress/drug effects
- Polysaccharides/pharmacology
- Protein Kinase C beta/metabolism
- Rats, Wistar
- Signal Transduction/drug effects
- Superoxide Dismutase/metabolism
- Ventricular Dysfunction, Left/diagnosis
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Xinfeng Yu
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
| | - Quanbin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wentong Cui
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
| | - Zheng Zeng
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
| | - Wenzhe Yang
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
| | - Chao Zhang
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
| | - Hongwei Zhao
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
| | - Weidong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiaomin Wang
- Department of Physiology, Capital Medical University, Beijing 100069, China
| | - Dali Luo
- Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Youanmenwai Street, No. 10 Xitoutiao, Fengtai District, Beijing 100069, China
- *Dali Luo:
| |
Collapse
|
21
|
Zhang L, Huang D, Shen D, Zhang C, Ma Y, Babcock SA, Chen B, Ren J. Inhibition of protein kinase C βII isoform ameliorates methylglyoxal advanced glycation endproduct-induced cardiomyocyte contractile dysfunction. Life Sci 2013; 94:83-91. [PMID: 24269213 DOI: 10.1016/j.lfs.2013.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 11/08/2013] [Indexed: 01/02/2023]
Abstract
AIMS Accumulation of advanced glycation endproduct (AGE) contributes to diabetic complication including diabetic cardiomyopathy although the precise underlying mechanism still remains elusive. Recent evidence depicted a pivotal role of protein kinase C (PKC) in diabetic complications. To this end, this study was designed to examine if PKCβII contributes to AGE-induced cardiomyocyte contractile and intracellular Ca(2+) aberrations. MAIN METHODS Adult rat cardiomyocytes were incubated with methylglyoxal-AGE (MG-AGE) in the absence or presence of the PKCβII inhibitor LY333531 for 12h. Contractile and intracellular Ca(2+) properties were assessed using an IonOptix system including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), rise in intracellular Ca(2+) Fura-2 fluorescence intensity and intracellular Ca(2+) decay. Oxidative stress, O2(-) production and mitochondrial integrity were examined using TBARS, fluorescence imaging, aconitase activity and Western blotting. KEY FINDINGS MG-AGE compromised contractile and intracellular Ca(2+) properties including reduced PS, ±dL/dt, prolonged TPS and TR90, decreased electrically stimulated rise in intracellular Ca(2+) and delayed intracellular Ca(2+) clearance, the effects of which were ablated by the PKCβII inhibitor LY333531. Inhibition of PKCβII rescued MG-AGE-induced oxidative stress, O2(-) generation, cell death, apoptosis and mitochondrial injury (reduced aconitase activity, UCP-2 and PGC-1α). In vitro studies revealed that PKCβII inhibition-induced beneficial effects were replicated by the NADPH oxidase inhibitor apocynin and were mitigated by the mitochondrial uncoupler FCCP. SIGNIFICANCE These findings implicated the therapeutic potential of specific inhibition of PKCβII isoform in the management of AGE accumulation-induced myopathic anomalies.
Collapse
Affiliation(s)
- Liwei Zhang
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China.
| | - Dangsheng Huang
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Dong Shen
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Chunhong Zhang
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Yongjiang Ma
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Sara A Babcock
- University of Wyoming College of Health Sciences, Laramie, WY 82071, United States
| | - Bingyang Chen
- Cardiology Department, The First Affiliated Hospital of PLA General Hospital, Beijing, 100037, China
| | - Jun Ren
- University of Wyoming College of Health Sciences, Laramie, WY 82071, United States; Department of Cardiology, Xijing Hospital, Fourth Military Medical University Xi'an, 710032, China.
| |
Collapse
|
22
|
Pearson JT, Jenkins MJ, Edgley AJ, Sonobe T, Joshi M, Waddingham MT, Fujii Y, Schwenke DO, Tsuchimochi H, Yoshimoto M, Umetani K, Kelly DJ, Shirai M. Acute Rho-kinase inhibition improves coronary dysfunction in vivo, in the early diabetic microcirculation. Cardiovasc Diabetol 2013; 12:111. [PMID: 24059472 PMCID: PMC3734116 DOI: 10.1186/1475-2840-12-111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Activation of RhoA/Rho-kinase (ROCK) is increasingly implicated in acute vasospasm and chronic vasoconstriction in major organ systems. Therefore we aimed to ascertain whether an increase in ROCK activity plays a role in the deterioration of coronary vascular function in early stage diabetes. METHODS Synchrotron radiation microangiography was used to determine in vivo coronary responses in diabetic (3 weeks post streptozotocin 65 mg/kg ip) and vehicle treated male Sprague-Dawley rats (n = 8 and 6). Changes in vessel number and calibre during vasodilator stimulation before and after blockade of nitric oxide synthase and cyclooxygenase were compared between rats. Acute responses to ROCK inhibitor, fasudil (10 mg/kg iv) was evaluated. Further, perivascular and myocardial fibrosis, arterial intimal thickening were assessed by histology, and capillary density, nitrotyrosine and ROCK1/2 expressions were evaluated by immunohistochemical staining. RESULTS Diabetic rats had significantly elevated plasma glucose (P < 0.001 vs control), but did not differ in fibrotic scores, media to lumen ratio, capillary density or baseline visible vessel number or calibre. Responses to acetylcholine and sodium nitroprusside stimulation were similar between groups. However, in comparison to control rats the diabetic rats showed more segmental constrictions during blockade, which were not completely alleviated by acetylcholine, but were alleviated by fasudil. Further, second order vessel branches in diabetic rats were significantly more dilated relative to baseline (37% vs 12% increase, P < 0.05) after fasudil treatment compared to control rats, while visible vessel number increased in both groups. ROCK2 expression was borderline greater in diabetic rat hearts (P < 0.053). CONCLUSIONS We found that ahead of the reported decline in coronary endothelial vasodilator function in diabetic rats there was moderate elevation in ROCK expression, more widespread segmental constriction when nitric oxide and prostacyclin production were inhibited and notably, increased calibre in second and third order small arteries-arterioles following ROCK inhibition. Based on nitrotyrosine staining oxidative stress was not significantly elevated in early diabetic rats. We conclude that tonic ROCK mediated vasoconstriction contributes to coronary vasomotor tone in early diabetes.
Collapse
Affiliation(s)
- James T Pearson
- Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Melbourne, Australia
- Australian Synchrotron, Melbourne, Australia
| | - Mathew J Jenkins
- Department of Physiology, Monash University, Melbourne, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Amanda J Edgley
- Department of Physiology, Monash University, Melbourne, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Takashi Sonobe
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Mandar Joshi
- The Ritchie Centre, Monash Institute of Medical Research, Melbourne, Australia
| | - Mark T Waddingham
- Department of Physiology, Monash University, Melbourne, Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Yutaka Fujii
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Daryl O Schwenke
- Department of Physiology, Otago University, Dunedin, New Zealand
| | | | - Misa Yoshimoto
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Darren J Kelly
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Melbourne, Australia
| | - Mikiyasu Shirai
- National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| |
Collapse
|
23
|
Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KF, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013; 62:2318-28. [PMID: 23474486 PMCID: PMC3712061 DOI: 10.2337/db12-1391] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC)β2 is preferably overexpressed in the diabetic myocardium, which induces cardiomyocyte hypertrophy and contributes to diabetic cardiomyopathy, but the underlying mechanisms are incompletely understood. Caveolae are critical in signal transduction of PKC isoforms in cardiomyocytes. Caveolin (Cav)-3, the cardiomyocyte-specific caveolar structural protein isoform, is decreased in the diabetic heart. The current study determined whether PKCβ2 activation affects caveolae and Cav-3 expression. Immunoprecipitation and immunofluorescence analysis revealed that high glucose (HG) increased the association and colocalization of PKCβ2 and Cav-3 in isolated cardiomyocytes. Disruption of caveolae by methyl-β-cyclodextrin or Cav-3 small interfering (si)RNA transfection prevented HG-induced PKCβ2 phosphorylation. Inhibition of PKCβ2 activation by compound CGP53353 or knockdown of PKCβ2 expression via siRNA attenuated the reductions of Cav-3 expression and Akt/endothelial nitric oxide synthase (eNOS) phosphorylation in cardiomyocytes exposed to HG. LY333531 treatment (for a duration of 4 weeks) prevented excessive PKCβ2 activation and attenuated cardiac diastolic dysfunction in rats with streptozotocin-induced diabetes. LY333531 suppressed the decreased expression of myocardial NO, Cav-3, phosphorylated (p)-Akt, and p-eNOS and also mitigated the augmentation of O2(-), nitrotyrosine, Cav-1, and iNOS expression. In conclusion, hyperglycemia-induced PKCβ2 activation requires caveolae and is associated with reduced Cav-3 expression in the diabetic heart. Prevention of excessive PKCβ2 activation attenuated cardiac diastolic dysfunction by restoring Cav-3 expression and subsequently rescuing Akt/eNOS/NO signaling.
Collapse
Affiliation(s)
- Shaoqing Lei
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Haobo Li
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Jinjin Xu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Yanan Liu
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Xia Gao
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
| | - Junwen Wang
- Department of Biochemistry, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Kwok F.J. Ng
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Xin-liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G. Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research & Innovation, University of Hong Kong, Shenzhen, China
- Corresponding author: Zhengyuan Xia,
| |
Collapse
|
24
|
Wang Z, Zhang Y, Guo J, Jin K, Li J, Guo X, Scott GI, Zheng Q, Ren J. Inhibition of protein kinase C βII isoform rescues glucose toxicity-induced cardiomyocyte contractile dysfunction: role of mitochondria. Life Sci 2013; 93:116-24. [PMID: 23770211 DOI: 10.1016/j.lfs.2013.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/16/2013] [Accepted: 06/02/2013] [Indexed: 12/28/2022]
Abstract
AIMS Hyperglycemia leads to cytotoxicity in the heart. Although theories were postulated for glucose toxicity-induced cardiomyocyte dysfunction including oxidative stress, the mechanism involved still remains unclear. Recent evidence has depicted a role of protein kinase C (PKC) in diabetic complications while high concentrations of glucose stimulate PKC. This study examined the role of PKCβII in glucose toxicity-induced cardiomyocyte contractile and intracellular Ca(2+) aberrations. MAIN METHODS Adult rat cardiomyocytes were maintained in normal (NG, 5.5 mM) or high glucose (HG, 25.5 mM) medium for 12 h. Contractile and intracellular Ca(2+) properties were measured using a video edge-detection system including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), rise in intracellular Ca(2+) Fura-2 fluorescence intensity and intracellular Ca(2+) decay. Production of ROS/O2(-) and mitochondrial integrity were examined using fluorescence imaging, aconitase activity and Western blotting. KEY FINDINGS High glucose triggered abnormal contractile and intracellular Ca(2+) properties including reduced PS, ±dL/dt, prolonged TR90, decreased electrically-stimulated rise in intracellular Ca(2+) and delayed intracellular Ca(2+) clearance, the effects of which were ablated by the PKCβII inhibitor LY333531. Inhibition of PKCβII rescued glucose toxicity-induced generation of ROS and O2(-), apoptosis, cell death and mitochondrial injury (reduced aconitase activity, UCP-2 and PGC-1α). In vitro studies revealed that PKCβII inhibition-induced beneficial effects were mimicked by the NADPH oxidase inhibitor apocynin and were canceled off by mitochondrial uncoupling using FCCP. SIGNIFICANCE These findings suggest the therapeutic potential of specific inhibition of PKCβII isoform in the management of hyperglycemia-induced cardiac complications.
Collapse
Affiliation(s)
- Zikuan Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tie L, An Y, Han J, Xiao Y, Xiaokaiti Y, Fan S, Liu S, Chen AF, Li X. Genistein accelerates refractory wound healing by suppressing superoxide and FoxO1/iNOS pathway in type 1 diabetes. J Nutr Biochem 2013; 24:88-96. [DOI: 10.1016/j.jnutbio.2012.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/02/2012] [Accepted: 02/17/2012] [Indexed: 01/01/2023]
|
26
|
miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp Cell Res 2012; 319:173-84. [PMID: 23211718 DOI: 10.1016/j.yexcr.2012.11.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/30/2012] [Accepted: 11/22/2012] [Indexed: 12/17/2022]
Abstract
p300, a transcriptional co-activator with histone acetyl transferase (HAT) activity, plays an essential role in the pathogenesis of cardiomyocyte hypertrophy in response to multiple pro-hypertrophic stimuli including hyperglycemia. However, the precise mechanisms by which p300 expression is regulated remain unclear. The purpose of this study was to investigate the role of miR-150, a potential p300-targeting microRNA (miRNA), in the post-transcriptional control of p300 expression and cardiomyocyte hypertrophy induced by high glucose. We observed that the expression of miR-150 was significantly reduced, whereas the expression of p300 was strongly elevated, concomitant with cardiomyocyte hypertrophy, in the hearts of diabetic rats compared with normal controls. Similar alterations were observed in neonatal rat cardiomyocytes that had been exposed to high levels of glucose. miR-150 mimics inhibited p300 3'-UTR luciferase reporter activity, as well as endogenous p300 expression. In addition, miR-150 mimics prevented glucose-induced cardiomyocyte hypertrophy. Co-transfection with a p300 expression vector and miR-150 mimics reversed the protective effect of miR-150 on cardiomyocyte hypertrophy. We further showed that the high glucose-mediated activation of PKCβ(2) in turn mediated the down-regulation of miR-150 expression. These data demonstrated a novel upstream role for miR-150 in p300-mediated cardiomyocyte hypertrophy and revealed a previously uncharacterized miRNAs and HATs cross-talk mechanism for the hypertrophic phenotype induced by high glucose.
Collapse
|
27
|
Roe ND, Ren J. Nitric oxide synthase uncoupling: A therapeutic target in cardiovascular diseases. Vascul Pharmacol 2012; 57:168-72. [DOI: 10.1016/j.vph.2012.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 01/27/2012] [Accepted: 02/09/2012] [Indexed: 01/10/2023]
|
28
|
Soliman H, Gador A, Lu YH, Lin G, Bankar G, MacLeod KM. Diabetes-induced increased oxidative stress in cardiomyocytes is sustained by a positive feedback loop involving Rho kinase and PKCβ2. Am J Physiol Heart Circ Physiol 2012; 303:H989-H1000. [PMID: 22865386 DOI: 10.1152/ajpheart.00416.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We previously reported that acute inhibition of the RhoA/Rho kinase (ROCK) pathway normalized contractile function of diabetic rat hearts, but the underlying mechanism is unclear. Protein kinase C (PKC) β(2) has been proposed to play a major role in diabetic cardiomyopathy at least in part by increasing oxidative stress. Further evidence suggests that PKC positively regulates RhoA expression through induction of inducible nitric oxide synthase (iNOS) in diabetes. However, in preliminary studies, we found that inhibition of ROCK itself reduced RhoA expression in diabetic hearts. We hypothesized that there is an interaction between RhoA/ROCK and PKCβ(2) in the form of a positive feedback loop that sustains their activation and the production of reactive oxygen species (ROS). This was investigated in cardiomyocytes isolated from diabetic and control rat hearts, incubated with or without cytochalasin D or inhibitors of ROCK, RhoA, PKCβ(2), or iNOS. Inhibition of RhoA and ROCK markedly attenuated the diabetes-induced increases in PKCβ(2) activity and iNOS and RhoA expression in diabetic cardiomyocytes, while having no effect in control cells. Inhibition of PKCβ(2) and iNOS also normalized RhoA expression and ROCK overactivation, whereas iNOS inhibition reversed the increase in PKCβ(2) activity. Each of these treatments also normalized the diabetes-induced increase in production of ROS. Actin cytoskeleton disruption attenuated the increased expression and/or activity of all of these targets in diabetic cardiomyocytes. These data suggest that, in the diabetic heart, the RhoA/ROCK pathway contributes to contractile dysfunction at least in part by sustaining PKCβ(2) activation and ROS production via a positive feedback loop that requires an intact cytoskeleton.
Collapse
Affiliation(s)
- Hesham Soliman
- Molecular and Cellular Pharmacology Research Group, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
29
|
Rui T, Zhang J, Xu X, Yao Y, Kao R, Martin CM. Reduction in IL-33 expression exaggerates ischaemia/reperfusion-induced myocardial injury in mice with diabetes mellitus. Cardiovasc Res 2012; 94:370-8. [DOI: 10.1093/cvr/cvs015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
30
|
PKCβ inhibition with ruboxistaurin reduces oxidative stress and attenuates left ventricular hypertrophy and dysfunction in rats with streptozotocin-induced diabetes. Clin Sci (Lond) 2011; 122:161-73. [PMID: 21892921 DOI: 10.1042/cs20110176] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays critical roles in the development of diabetic cardiovascular complications, including myocardial hypertrophy. The β isoform of PKC (protein kinase C) is preferentially overexpressed in the myocardium of diabetic subjects accompanied with increased activation of the pro-oxidant enzyme NADPH oxidase, which may exacerbate oxidative stress. We hypothesized that myocardial PKCβ is a major upstream mediator of oxidative stress in diabetes and that PKCβ inhibition can attenuate myocardial hypertrophy and dysfunction. Control or streptozotocin-induced diabetic rats were treated with the selective PKCβ inhibitor RBX (ruboxistaurin; 1 mg/kg of body weight per day) or the antioxidant NAC (N-acetylcysteine) for 4 weeks. LV (left ventricular) dimensions and functions were detected by echocardiography. 15-F2t-isoprostane (a specific index of oxidative stress) and myocardial activities of superoxide dismutase as well as protein levels of NADPH oxidase were assessed by immunoassay or Western blotting. Echocardiography revealed that the LV mass/body weight ratio was significantly increased in diabetic rats (P<0.01 compared with the control group) in parallel with the impaired LV relaxation. A significant increase in cardiomyocyte cross-sectional area was observed in diabetic rats accompanied by an increased production of O2- (superoxide anion) and 15-F2t-isoprostane (all P<0.05 compared with the control group). RBX normalized these changes with concomitant inhibition of PKCβ2 activation and prevention of NADPH oxidase subunit p67phox membrane translocation and p22phox overexpression. The effects of RBX were comparable with that of NAC, except that NAC was inferior to RBX in attenuating cardiac dysfunction. It is concluded that RBX can ameliorate myocardial hypertrophy and dysfunction in diabetes, which may represent a novel therapy in the prevention of diabetic cardiovascular complications.
Collapse
|
31
|
Lappas M, Hiden U, Desoye G, Froehlich J, Hauguel-de Mouzon S, Jawerbaum A. The role of oxidative stress in the pathophysiology of gestational diabetes mellitus. Antioxid Redox Signal 2011; 15:3061-100. [PMID: 21675877 DOI: 10.1089/ars.2010.3765] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Normal human pregnancy is considered a state of enhanced oxidative stress. In pregnancy, it plays important roles in embryo development, implantation, placental development and function, fetal development, and labor. However, pathologic pregnancies, including gestational diabetes mellitus (GDM), are associated with a heightened level of oxidative stress, owing to both overproduction of free radicals and/or a defect in the antioxidant defenses. This has important implications on the mother, placental function, and fetal well-being. Animal models of diabetes have confirmed the important role of oxidative stress in the etiology of congenital malformations; the relative immaturity of the antioxidant system facilitates the exposure of embryos and fetuses to the damaging effects of oxidative stress. Of note, there are only a few clinical studies evaluating the potential beneficial effects of antioxidants in GDM. Thus, whether or not increased antioxidant intake can reduce the complications of GDM in both mother and fetus needs to be explored. This review provides an overview and updated data on our current understanding of the complications associated with oxidative changes in GDM.
Collapse
Affiliation(s)
- Martha Lappas
- Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
32
|
Sun Y, Ding W, Wei Q, Sheng WC. Disorder gene expression of extracellular matrix and adhesion molecules in saphenous vein conduits of diabetic patients. Interact Cardiovasc Thorac Surg 2011; 14:279-82. [PMID: 22171077 DOI: 10.1093/icvts/ivr053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saphenous vein (SV) is the most commonly employed conduit in coronary surgery. However, the extracellular matrix (ECM) characteristics of SV in diabetic patients still remain unclear. This study was to survey the ECM gene expression profile of SV in diabetic patients. Thirty-five patients had type 2 diabetic mellitus; the non-diabetic (control) group comprised 49 patients. The expression profile of ECM genes was analysed by microarray. Tissue MMP/TIMP protein activities were evaluated by immunocytochemistry and western-blot. In this microarray, 25 genes demonstrated at least a 3-fold difference in expression. Upregulation was observed in 20 genes, while five genes appeared to be downregulated. SV exposed to DM conditions demonstrated a notable increase in MMP-2 and MMP-9 but a significant decrease in TIMP-2 and TIMP-3 in protein concentration compared with control group. This study suggests that native ECM gene expression profile of SV in diabetic patients has showed signs of the vein graft disease process before coronary surgery. Preoperative profiles of diabetic patients might provide some useful clues regarding vein graft quality and prompt adjustment in surgical strategy.
Collapse
Affiliation(s)
- Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
33
|
Juan YS, Chuang SM, Long CY, Lin RJ, Liu KM, Wu WJ, Huang CH. Protein kinase C inhibitor prevents renal apoptotic and fibrotic changes in response to partial ureteric obstruction. BJU Int 2011; 110:283-92. [DOI: 10.1111/j.1464-410x.2011.10805.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Roganović J, Radenković M, Tanić N, Tanić N, Petrović N, Stojić D. Impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated parotid artery of the alloxan-induced diabetic rabbit. Eur J Oral Sci 2011; 119:352-360. [PMID: 21896051 DOI: 10.1111/j.1600-0722.2011.00851.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The aim of this study was to assess the effect of type 1 diabetes mellitus (induced by a single intravenous injection of 100 mg kg(-1) of alloxan) on acetylcholine (ACh)-induced relaxation in isolated rabbit parotid gland feeding artery. Isometric force measurements and quantification of inducible nitric oxide synthase (iNOS) mRNA by real-time RT-PCR were made in parotid artery rings from diabetic and control rabbits. Acetylcholine induced concentration- and endothelium-dependent vasorelaxation that was significantly decreased in parotid artery rings from diabetic rabbits. Schild analysis of the ACh vasorelaxant effect, in the presence of selective muscarinic receptor antagonists, revealed involvement of the M(3) receptor subtype in parotid artery rings from both control and diabetic rabbits, with no change in antagonist affinity constants. The inhibitory effects of indomethacin, a non-selective inhibitor of cyclooxygenase, and of high potassium, an inhibitor of hyperpolarization, on ACh vasorelaxation were increased. The effect of N(G) -nitro-l-arginine, a non-selective inhibitor of NOS, was decreased in diabetes. S-methylisothiourea, a selective inhibitor of iNOS, significantly reduced ACh vasorelaxation only in parotid artery rings from diabetic rabbits. Also, up-regulation of iNOS mRNA expression was detected in parotid artery rings from diabetic rabbits. These results suggest that in parotid artery rings from diabetic rabbits, impaired endothelium-dependent vasorelaxation to ACh appears to be caused by the loss of a nitric oxide-mediated component and increased iNOS expression, and is unlikely to be caused by a change at the M(3) receptor level.
Collapse
|
35
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Djordjevic JD, Radak DJ, Mikhailidis DP, Isenović ER. Regulation of Inducible Nitric Oxide Synthase (iNOS) and its Potential Role in Insulin Resistance, Diabetes and Heart Failure. Open Cardiovasc Med J 2011; 5:153-63. [PMID: 21792376 PMCID: PMC3141344 DOI: 10.2174/1874192401105010153] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023] Open
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Branislava D Dobutović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Emina M Sudar
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Milan M Obradović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Dragana M Nikolić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Jelena D Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, P.O.Box S2 Republic of Serbia
| | - Djordje J Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Belgrade, Serbia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free campus, University College London Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
| | - Esma R Isenović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| |
Collapse
|
36
|
Wen J, Ribeiro R, Zhang Y. Specific PKC isoforms regulate LPS-stimulated iNOS induction in murine microglial cells. J Neuroinflammation 2011; 8:38. [PMID: 21510893 PMCID: PMC3110130 DOI: 10.1186/1742-2094-8-38] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 04/21/2011] [Indexed: 12/22/2022] Open
Abstract
Background Excessive production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) in reactive microglia is a major contributor to initiation/exacerbation of inflammatory and degenerative neurological diseases. Previous studies have indicated that activation of protein kinase C (PKC) can lead to iNOS induction. Because of the existence of various PKC isoforms and the ambiguous specificity of PKC inhibitors, it is unclear whether all PKC isoforms or a specific subset are involved in the expression of iNOS by reactive microglia. In this study, we employed molecular approaches to characterize the role of each specific PKC isoform in the regulation of iNOS expression in murine microglia. Methods Induction of iNOS in response to bacterial endotoxin lipopolysaccharide (LPS) was measured in BV-2 murine microglia treated with class-specific PKC inhibitors, or transfected with siRNA to silence specific PKC isoforms. iNOS expression and MAPK phosphorylation were evaluated by western blot. The role of NF-κB in activated microglia was examined by determining NF-κB transcriptional response element- (TRE-) driven, promoter-mediated luciferase activity. Results Murine microglia expressed high levels of nPKCs, and expressed relatively low levels of cPKCs and aPKCs. All PKC inhibitors attenuated induction of iNOS in LPS-activated microglia. Knockdown of PKC δ and PKC β attenuated ERK1/2 and p38 phosphorylation, respectively, and blocked NF-κB activation that leads to the expression of iNOS in reactive microglia. Conclusions Our results identify PKC δ and β as the major PKC isoforms regulating iNOS expression in reactive microglia. The signaling pathways mediated by PKC involve phosphorylation of distinct MAPKs and activation of NF-κB. These results may help in the design of novel and selective PKC inhibitors for the treatment of many inflammatory and neurological diseases in which production of NO plays a pathogenic role.
Collapse
Affiliation(s)
- Jie Wen
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
37
|
Cao Y, Zhao Z, Eckert RL, Reece EA. Protein kinase Cβ2 inhibition reduces hyperglycemia-induced neural tube defects through suppression of a caspase 8-triggered apoptotic pathway. Am J Obstet Gynecol 2011; 204:226.e1-5. [PMID: 21376163 DOI: 10.1016/j.ajog.2011.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/09/2011] [Accepted: 01/11/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Neural tube defects in diabetic embryopathy are associated with increased protein kinase C (PKC)β2 activity and programmed cell death (apoptosis). The apoptosis is triggered by caspase 8, which activates members of the Bcl-2 and caspase families, such as Bid and caspase 3. Whether PKCβ2 regulates caspase 8-induced apoptosis remains to be addressed. STUDY DESIGN Mouse embryos at embryonic day 8.5 were cultured in a high concentration of glucose (22 mmol/L) and treated with PKCβ2 inhibitor (50 nmol/L) for 48 hours. The levels of apoptosis and activation of apoptotic factors were quantified using the terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling and Western blot assays, respectively. RESULTS Reduction in the rate of neural tube defect by PKCβ2 inhibition is associated with significant decreases in the levels of apoptosis, and caspase 8, caspase 3, and Bid activation, and cytochrome C release from mitochondria, to the similar levels as in euglycemic controls (8.3 mmol/L; P < .05). CONCLUSION PKCβ2 influences a caspase 8-regulated apoptotic pathway in diabetic embryopathy.
Collapse
Affiliation(s)
- Yuanning Cao
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
38
|
Effect of lignin-derived lignophenols on vascular oxidative stress and inflammation in streptozotocin-induced diabetic rats. Mol Cell Biochem 2010; 348:117-24. [DOI: 10.1007/s11010-010-0645-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
39
|
Campo GM, Avenoso A, Micali A, Nastasi G, Squadrito F, Altavilla D, Bitto A, Polito F, Rinaldi MG, Calatroni A, D'Ascola A, Campo S. High-molecular weight hyaluronan reduced renal PKC activation in genetically diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1118-1130. [PMID: 20713153 DOI: 10.1016/j.bbadis.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/04/2010] [Accepted: 08/10/2010] [Indexed: 02/07/2023]
Abstract
The cluster determinant (CD44) seems to play a key role in tissues injured by diabetes type 2. CD44 stimulation activates the protein kinase C (PKC) family which in turn activates the transcriptional nuclear factor kappa B (NF-κB) responsible for the expression of the inflammation mediators such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18), inducible nitric oxide synthase (iNOS), and matrix metalloproteinases (MMPs). Regulation of CD44 interaction with its ligands depends greatly upon PKC. We investigated the effect of the treatment with high-molecular weight hyaluronan (HA) on diabetic nephropathy in genetically diabetic mice. BKS.Cg-m+/+Lepr(db) mice had elevated plasma insulin from 15 days of age and high blood sugar levels at 4 weeks. The severe nephropathy that developed was characterized by a marked increased in CD44 receptors, protein kinase C betaI, betaII, and epsilon (PKC(βI), PKC(βII), and PKCε) mRNA expression and the related protein products in kidney tissue. High levels of mRNA and related protein levels were also detected in the damaged kidney for NF-κB, TNF-α, IL-6, IL-18, MMP-7, and iNOS. Chronic daily administration of high-molecular mass HA for 2 weeks significantly reduced CD44, PKC(βI), PKC(βII), and PKCα gene expression and the related protein production in kidney tissue and TNF-α, IL-6, IL-18, MMP-7, and iNOS expression and levels also decreased. Histological analysis confirmed the biochemical data. However, blood parameters of diabetes were unchanged. These results suggest that the CD44 and PKC play an important role in diabetes and interaction of high-molecular weight HA with these proteins may reduce inflammation and secondary pathologies due to this disease.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Time-dependent increases in ouabain-sensitive Na+, K+-ATPase activity in aortas from diabetic rats: The role of prostanoids and protein kinase C. Life Sci 2010; 87:302-8. [DOI: 10.1016/j.lfs.2010.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 11/21/2022]
|
41
|
Vitai M, Kocsordi K, Buday B, Literáti Nagy B, Kulcsár E, Bezzegh K, Péterfai É, Koltay L, Korányi L. Effects of catalase gene (RS769217) polymorphism on energy homeostasis and bone status are gender specific. Orv Hetil 2010; 151:923-31. [DOI: 10.1556/oh.2010.28893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Az oxidatív stressz kóroki szerepe a csontállapot és a szénhidrát-anyagcsere romlásában ma már elfogadott. Vizsgálatunk során az egyik legismertebb antioxidáns enzim, a kataláz +22348C>T (RS769217) polimorfizmus hatását vizsgáltuk az inzulinérzékenységre, glükózfelhasználásra és a csontok denzitására. A glükózfelhasználás mérését (hyperinsulinaemiás klemp) és a genotipizálást 51 nő (24 egészséges, 27 glükózintoleráns: IFG, IGT és kezelést nem igénylő 2DM) és 90 férfi (64 egészséges és 26 glükózintoleráns) esetében végeztük el. Az allélfrekvenciákban a vizsgált dunántúli populációban, a nemek és csoportok között nem találtunk szignifikáns különbséget. A katalázgén-polimorfizmus anyagcsere- és csonthatása a nemek szerint különbözött. Nők esetében a T-allél megjelenése szignifikánsan jobb HOMA-IR indexet (CC: 2,95±1,8 vs. CT+TT: 2,06±0,9, p<0,05) és a TT-homozygoták esetében jobb teljestest-glükózfelhasználást eredményezett (M-1: CC: 9,43±4,4 vs. TT: 13,23±1,6 mg/kg/min, p<0,05), de a csontok denzitása nem különbözött. Férfiaknál a T-allél megjelenése alacsonyabb femurdenzitással (CC: 1,110±0,17 vs. CT+TT: 1,030±0,16, p<0,05 g/cm
2
) és jobb HOMA-indexszel (CC: 2,42±2,3 vs. CT+TT: 1,50±0,2, p<0,05 ) társult, de javulást az izomszövet cukorfelhasználásában nem mértünk. A szervezet energia-háztartását és a csontanyagcserét összekapcsoló osteocalcin anyagcsere-kapcsolata nők esetében (r = +0,4424, p<0,05, n = 23) a T-allél megjelenésekor eltűnik. A többszörös korrelációs számítások szerint a leptin/adiponektin arány nők esetében a femur, férfiak esetében az L1-4 BMD-értékét befolyásolja, de ezek a kapcsolatok a T-allél megjelenésekor megszűntek. Eredményeink eltérnek a koreai nőkön mért adatoktól, és hangsúlyozzák a genetikai vizsgálatok különböző populációkon történő ismétlésének szükségét, és az anyagcsereadatok nemek szerinti értékelésének fontosságát.
Collapse
Affiliation(s)
| | - Krisztina Kocsordi
- 2 Debreceni Egyetem, Általános Orvostudományi Kar, Orvos- és Egészségtudományi Centrum Orvosi Laboratóriumi és Képalkotó Diagnosztikai Tanszék Debrecen
| | | | | | | | | | | | - László Koltay
- 4 Pannon Egyetem Matematikai és Számítástechnikai Tanszék Veszprém
| | | |
Collapse
|
42
|
Current literature in diabetes. Diabetes Metab Res Rev 2010; 26:i-xi. [PMID: 20474064 DOI: 10.1002/dmrr.1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Nagareddy PR, MacLeod KM, McNeill JH. GPCR agonist-induced transactivation of the EGFR upregulates MLC II expression and promotes hypertension in insulin-resistant rats. Cardiovasc Res 2010; 87:177-86. [PMID: 20110336 DOI: 10.1093/cvr/cvq030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS The presence of metabolic abnormalities such as insulin resistance and elevated levels of various vasoconstrictor G-protein-coupled receptor (GPCR) agonists contributes to the development of hypertension. Recent studies have suggested a link between disease progression and activation of growth factor receptor signalling pathways such as the epidermal growth factor receptor (EGFR) by matrix metalloproteinases (MMPs). We hypothesized that excessive stimulation of GPCRs such as alpha(1)-adrenergic receptors activates MMP-dependent EGFR transactivation and contributes to the development of hypertension by promoting increased synthesis of contractile proteins in vascular smooth muscle (VSM). METHODS AND RESULTS We tested this concept in experiments using insulin-resistant VSM cells (VSMCs) and fructose hypertensive rats (FHRs), a model of acquired systolic hypertension and insulin resistance. We found that insulin resistance and agonist stimulation increased the expression and activity of MMPs (MMP-2 and MMP-7), the EGFR, contractile proteins such as myosin light chain kinase and MLC II, and their transcriptional activators including P90 ribosomal kinase (P90RSK) and serum response factor, possibly via the activation of extracellular signal-regulated kinase (ERK1/2) in VSMCs. Further, in insulin-resistant VSMCs and arteries from FHRs, disruption of MMP-EGFR signalling either by a pharmacological or small interfering RNA approach normalized the increased expression and activity of contractile proteins and their transcriptional activators and prevented the development of hypertension in FHRs. CONCLUSION Our data suggest that the MMP-EGFR pathway could be a potential target in the treatment of hypertension in insulin resistance and/or hyperglycaemic conditions such as type 2 diabetes.
Collapse
Affiliation(s)
- Prabhakara Reddy Nagareddy
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | |
Collapse
|
44
|
Abstract
Hyperglycemia is an important factor in the development of macrovascular and microvascular complications in all diabetic patients. Several hypotheses have been postulated to explain the adverse effect of hyperglycemia on the vasculature; and one of these hypotheses is the activation of specific isoforms of protein kinase C (PKC) by diabetes. In this review, we summarize the molecular mechanisms of PKC activation and its relationship to diabetic complications. PKC activity regulates vascular permeability, contractility, extracellular matrix synthesis, hormone receptor turnover and proliferation, cell growth, angiogenesis, cytokine activation and leukocyte adhesion. All of these properties are abnormal in diabetes and are correlated with increased diacylglycerol-PKC pathway and PKCα, β1/2 and δ isoforms activation in the retina, aorta, heart and renal glomeruli.
Collapse
Affiliation(s)
- George L King
- a Professor of Medicine, Harvard Medical School, Department of Vascular Cell Biology, Senior Vice President, Research Director, Joslin Diabetes Center, 1 Joslin Place, Boston, MA 02215, USA.
| | - Net Das-Evcimen
- b Biochemistry Department, Pharmacy Faculty, Ankara University, 06100, Tandogan, Ankara, Turkey.
| |
Collapse
|