1
|
Zhao Y, Chai X, Peng J, Zhu Y, Dong R, He J, Xia L, Liu S, Chen J, Xu Z, Luo C, Sheng J. Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention. Nat Metab 2025; 7:367-382. [PMID: 39820557 DOI: 10.1038/s42255-024-01206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1. Mechanistically, proline diminished paraspeckles in hepatocytes, liberating the retained mRNA species into cytoplasm for translation, including the mRNAs of Ppargc1a and Foxo1, contributing to enhanced gluconeogenesis and hyperglycaemia. We further demonstrated that the proline-paraspeckle-mRNA retention axis existed in diabetic liver samples, and intervening in this axis via paraspeckle restoration substantially alleviated hyperglycaemia in both female and male diabetic mouse models. Collectively, our results not only delineated a previously unappreciated proline-instigated, paraspeckle-dependent mRNA-retention mechanism regulating gluconeogenesis, but also spotlighted proline and paraspeckle as potential targets for managing hyperglycaemia.
Collapse
Affiliation(s)
- Yurong Zhao
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinxin Chai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwei He
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Linghao Xia
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Sishuo Liu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingzhou Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Korvyakova Y, Azarova I, Klyosova E, Postnikova M, Makarenko V, Bushueva O, Solodilova M, Polonikov A. The link between the ANPEP gene and type 2 diabetes mellitus may be mediated by the disruption of glutathione metabolism and redox homeostasis. Gene 2025; 935:149050. [PMID: 39489227 DOI: 10.1016/j.gene.2024.149050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aminopeptidase N (ANPEP), a membrane-associated ectoenzyme, has been identified as a susceptibility gene for type 2 diabetes (T2D) by genome-wide association and transcriptome studies; however, the mechanisms by which this gene contributes to disease pathogenesis remain unclear. The aim of this study was to determine the comprehensive contribution of ANPEP polymorphisms to T2D risk and annotate the underlying mechanisms. A total of 3206 unrelated individuals including 1579 T2D patients and 1627 controls were recruited for the study. Twenty-three common functional single nucleotide polymorphisms (SNP) of ANPEP were genotyped by the MassArray-4 system. Six polymorphisms, rs11073891, rs12898828, rs12148357, rs9920421, rs7111, and rs25653, were found to be associated with type 2 diabetes (Pperm ≤ 0.05). Common haplotype rs9920421G-rs4932143G-rs7111T was strongly associated with increased risk of T2D (Pperm = 5.9 × 10-12), whereas two rare haplotypes such as rs9920421G-rs4932143C-rs7111T (Pperm = 6.5 × 10-40) and rs12442778A-rs12898828A-rs6496608T-rs11073891C (Pperm = 1.0 × 10-7) possessed strong protection against disease. We identified 38 and 109 diplotypes associated with T2D risk in males and females, respectively (FDR ≤ 0.05). ANPEP polymorphisms showed associations with plasma levels of fasting blood glucose, aspartate aminotransferase, total protein and glutathione (P < 0.05), and several haplotypes were strongly associated with the levels of reactive oxygen species and uric acid (P < 0.0001). A deep literature analysis has facilitated the formulation of a hypothesis proposing that increased plasma levels of ANPEP as well as liver enzymes such as aspartate aminotransferase, alanine aminotransferase and gammaglutamyltransferase serve as an adaptive response directed towards the restoration of glutathione deficiency in diabetics by stimulating the production of amino acid precursors for glutathione biosynthesis.
Collapse
Affiliation(s)
- Yaroslava Korvyakova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation; Research Centre for Medical Genetics, 1 Moskvorechie St., Moscow 115522, Russian Federation.
| | - Iuliia Azarova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation; Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation.
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation; Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation.
| | - Maria Postnikova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| | - Victor Makarenko
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation
| | - Olga Bushueva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation.
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, Kursk 305041, Russian Federation; Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya St., Kursk 305041, Russian Federation.
| |
Collapse
|
3
|
Tranidou A, Siargkas A, Magriplis E, Tsakiridis I, Apostolopoulou A, Chourdakis M, Dagklis T. Relationship Between Amino Acid Intake in Maternal Diet and Risk of Gestational Diabetes Mellitus: Results from the BORN 2020 Pregnant Cohort in Northern Greece. Nutrients 2025; 17:173. [PMID: 39796608 PMCID: PMC11723356 DOI: 10.3390/nu17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Maternal amino acid intake and its biological value may influence glucose regulation and insulin sensitivity, impacting the risk of developing gestational diabetes mellitus (GDM). This study aimed to evaluate the association between amino acid intake from maternal diet before and during pregnancy and the risk of GDM. Methods: This study is part of the ongoing BORN2020 epidemiological Greek cohort. A validated semi-quantitative Food Frequency Questionnaire (FFQ) was used. Amino acid intakes were quantified from the FFQ responses. A multinomial logistic regression model, with adjustments made for maternal characteristics, lifestyle habits, and pregnancy-specific factors, was used. Results: A total of 797 pregnant women were recruited, of which 14.7% developed GDM. Higher cysteine intake during pregnancy was associated with an increase in GDM risk (adjusted odds ratio [aOR]: 5.75; 95% confidence interval [CI]: 1.42-23.46), corresponding to a 476% increase in risk. Additionally, higher intakes of aspartic acid (aOR: 1.32; 95% CI: 1.05-1.66), isoleucine (aOR: 1.48; 95% CI: 1.03-2.14), phenylalanine (aOR: 1.6; 95% CI: 1.04-2.45), and threonine (aOR: 1.56; 95% CI: 1.0-2.43) during pregnancy were also associated with increased GDM risk. Furthermore, total essential amino acid (EAA) (aOR: 1.04; 95% CI: 1.0-1.09) and non-essential amino acid (NEAA) (aOR: 1.05; 95% CI: 1.0-1.1) intakes during pregnancy were also linked to an increased risk of GDM. A secondary dose-response analysis affected by timing of assessment revealed that higher intake levels of specific amino acids showed a more pronounced risk. Conclusions: Optimizing the balance of certain amino acids during pregnancy may guide personalized nutritional interventions to mitigate GDM risk.
Collapse
Affiliation(s)
- Antigoni Tranidou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Antonios Siargkas
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Emmanuela Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Oos 75, 118 55 Athens, Greece;
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
| | - Aikaterini Apostolopoulou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
| |
Collapse
|
4
|
Myhrstad MCW, Ruud E, Gaundal L, Gjøvaag T, Rud I, Retterstøl K, Ulven SM, Holven KB, Koehler K, Telle-Hansen VH. Gut microbiota, physical activity and/or metabolic markers in healthy individuals - towards new biomarkers of health. Front Nutr 2024; 11:1438876. [PMID: 39668899 PMCID: PMC11635997 DOI: 10.3389/fnut.2024.1438876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/16/2024] [Indexed: 12/14/2024] Open
Abstract
Background The global prevalence of the metabolic disease Type 2 Diabetes (T2D) is increasing. Risk factors contributing to the development of T2D include overweight and obesity, lack of physical activity (PA), and an unhealthy diet. In addition, the gut microbiota has been shown to affect metabolic regulation. Since T2D is preventable, efforts should be put into the discovery of new biomarkers for early detection of individuals at risk of developing the disease. Objective The objective of the cross-sectional study was to explore the relationship between gut microbiota and physical activity (PA) and/or metabolic markers such as selected amino acids (AA), markers of glycaemic regulation and lipid metabolism and anthropometric measures. Design Healthy adults (18 and 65 years) with BMI between 18.5 and 27.5 kg/m2 originally recruited to a randomised controlled trial (RCT) (n = 17: six males, eleven females), were included in this exploratory cross-sectional study. Physical activity data was calculated based on a 3-days registration, and blood metabolome, gut microbiota analyses and anthropometric measures from one visit of the intervention were used in this cross-sectional study. Results Of the 47 gut bacteria analysed, there were a total of 87 significant correlations with AA, PA, body composition and/or metabolic markers. Several of the gut bacteria correlated with both PA, metabolic or anthropometric markers. Conclusion In this study, we demonstrate associations between gut bacteria and PA and/or metabolic markers including AA in healthy individuals. The results may guide future studies aiming at identifying new and early biomarkers of metabolic health and diseases.
Collapse
Affiliation(s)
- Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Emilia Ruud
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Line Gaundal
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Terje Gjøvaag
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Ida Rud
- Nofima-Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Oslo, Norway
| | - Karsten Koehler
- Department of Health and Sport Sciences, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
5
|
Patterson JS, Rana BK, Gu H, Sears DD. Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women. Metabolites 2024; 14:478. [PMID: 39330485 PMCID: PMC11433994 DOI: 10.3390/metabo14090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized controlled, four-condition crossover study conducted in 10 postmenopausal women with overweight or obesity were analyzed. During 5-hour conditions completed on separate days, the trial tested three interruption modalities: two-minute stands each 20 min (STS), hourly ten-minute standing breaks (Stand), hourly two-minute walks (Walk), and a controlled sit. Fasting baseline and 5-hour end point (2 h postprandial) samples were used for targeted metabolomic profiling. Condition-associated metabolome changes were compared using paired t-tests. STS eliminated the postprandial elevation of amino acid metabolites that was observed in the control. A norvaline derivative shown to have anti-hypertensive and -hyperglycemic effects was significantly increased during Stand and STS. Post-hoc testing identified 19 significantly different metabolites across the interventions. Tight metabolite clustering by condition was driven by amino acid, vasoactive, and sugar metabolites, as demonstrated by partial least squares-discriminant analyses. This exploratory study suggests that brief, low-intensity modalities of interrupting prolonged sitting can acutely elucidate beneficial cardiometabolic changes in postmenopausal women with cardiometabolic risk.
Collapse
Affiliation(s)
- Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Brinda K. Rana
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
- Department of Family Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
- UCSD Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Trischitta V, Antonucci A, Adamski J, Prehn C, Menzaghi C, Marucci A, Di Paola R. GALNT2 expression is associated with glucose control and serum metabolites in patients with type 2 diabetes. Acta Diabetol 2024; 61:1007-1013. [PMID: 38627282 PMCID: PMC11329529 DOI: 10.1007/s00592-024-02280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 08/09/2024]
Abstract
AIMS Aim of this study was to investigate in type 2 diabetes whether expression level of GALNT2, a positive modulator of insulin sensitivity, is associated with a metabolic signature. METHODS Five different metabolite families, including acylcarnitines, aminoacids, biogenic amines, phospholipids and sphingolipids were investigated in fasting serum of 70 patients with type 2 diabetes, by targeted metabolomics. GALNT2 expression levels were measured in peripheral white blood cells by RT-PCR. The association between GALNT2 expression and serum metabolites was assessed using false discovery rate followed by stepwise selection and, finally, multivariate model including several clinical parameters as confounders. The association between GALNT2 expression and the same clinical parameters was also investigated. RESULTS GALNT2 expression was independently correlated with HbA1c levels (P value = 0.0052), a finding that is the likely consequence of the role of GALNT2 on insulin sensitivity. GALNT2 expression was also independently associated with serum levels of the aminoacid glycine (P value = 0.014) and two biogenic amines phenylethylamine (P value = 0.0065) and taurine (P value = 0.0011). The association of GALNT2 expression with HbA1c was not mediated by these three metabolites. CONCLUSIONS Our data indicate that in type 2 diabetes the expression of GALNT2 is associated with several serum metabolites. This association needs to be further investigated to understand in depth its role in mediating the effect of GALNT2 on insulin sensitivity, glucose control and other clinical features in people with diabetes.
Collapse
Affiliation(s)
- Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy.
- Department of Experimental Medicine, Sapienza University, 00161, Rome, Italy.
| | - Alessandra Antonucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Cornelia Prehn
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Claudia Menzaghi
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Rosa Di Paola
- Research Unit of Diabetes and Endocrine Diseases, Fondazione IRCCS Casa Sollievo Della Sofferenza, 71013, San Giovanni Rotondo, Foggia, Italy.
| |
Collapse
|
7
|
Zhang F, Shan S, Fu C, Guo S, Liu C, Wang S. Advanced Mass Spectrometry-Based Biomarker Identification for Metabolomics of Diabetes Mellitus and Its Complications. Molecules 2024; 29:2530. [PMID: 38893405 PMCID: PMC11173766 DOI: 10.3390/molecules29112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Over the years, there has been notable progress in understanding the pathogenesis and treatment modalities of diabetes and its complications, including the application of metabolomics in the study of diabetes, capturing attention from researchers worldwide. Advanced mass spectrometry, including gas chromatography-tandem mass spectrometry (GC-MS/MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-Q-TOF-MS), etc., has significantly broadened the spectrum of detectable metabolites, even at lower concentrations. Advanced mass spectrometry has emerged as a powerful tool in diabetes research, particularly in the context of metabolomics. By leveraging the precision and sensitivity of advanced mass spectrometry techniques, researchers have unlocked a wealth of information within the metabolome. This technology has enabled the identification and quantification of potential biomarkers associated with diabetes and its complications, providing new ideas and methods for clinical diagnostics and metabolic studies. Moreover, it offers a less invasive, or even non-invasive, means of tracking disease progression, evaluating treatment efficacy, and understanding the underlying metabolic alterations in diabetes. This paper summarizes advanced mass spectrometry for the application of metabolomics in diabetes mellitus, gestational diabetes mellitus, diabetic peripheral neuropathy, diabetic retinopathy, diabetic nephropathy, diabetic encephalopathy, diabetic cardiomyopathy, and diabetic foot ulcers and organizes some of the potential biomarkers of the different complications with the aim of providing ideas and methods for subsequent in-depth metabolic research and searching for new ways of treating the disease.
Collapse
Affiliation(s)
- Feixue Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Shan Shan
- College of Life Science, National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China;
| | - Chenlu Fu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
- School of Pharmacy, Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Medical College, Hubei University of Science and Technology, Xianning 437100, China; (F.Z.); (C.F.); (S.G.)
| | - Shuanglong Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
8
|
do Prado WL, Josephson S, Cosentino RG, Churilla JR, Hossain J, Balagopal PB. Preliminary evidence of glycine as a biomarker of cardiovascular disease risk in children with obesity. Int J Obes (Lond) 2023; 47:1023-1026. [PMID: 37516817 DOI: 10.1038/s41366-023-01354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Glycine (GLY) is a substrate for a wide range of metabolic processes. Several preclinical and adult studies demonstrated inverse associations of GLY with obesity, cardiovascular disease (CVD) and diabetes. However, little evidence is available on relationships between GLY and CVD risk in children. We assessed links between circulating GLY and biomarkers of CVD in children with obesity. Participants included both male and females with normal weight (NW, n = 6) and obesity (OB, n = 15), with age 14-18 years and Tanner stage >IV. Concentrations of GLY, branched chain amino acids (BCAA), and 25-hydroxy vitamin-D [25(OH)D], glucose, insulin, adiponectin, high sensitivity C-reactive protein (hs-CRP), and interleukin-6 (IL-6) were measured using established techniques, and body composition by DXA. Homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. Our study identified major relationships of GLY (p-value < 0.01 for all) of GLY with visceral fat (r2 = 0.40), BCAA (r2 = 0.44), HOMA-IR (r2 = 0.33), 25(OH)D (r2 = 0.48), IL-6 (r2 = 0.46) and adiponectin (r2 = 0.39). Given that CVD progression is a continuum and the disease itself is not present in children and biomarkers are typically used to monitor CVD in children, the links between GLY and biomarkers of CVD provide evidence for the first time of a potential role for GLY in CVD in children with obesity.
Collapse
Affiliation(s)
| | - Samantha Josephson
- Biomedical Research, Nemours Children's Health System, Jacksonville, FL, USA
| | - Ralph G Cosentino
- Department of Kinesiology, University of North Florida, Jacksonville, FL, USA
| | - James R Churilla
- Department of Kinesiology, University of North Florida, Jacksonville, FL, USA
| | - Jobayer Hossain
- Department of Biostatistics, Nemours Children's Health System, Wilmington, DE, USA
| | - P Babu Balagopal
- Biomedical Research, Nemours Children's Health System, Jacksonville, FL, USA.
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
9
|
Ding Y, Wang S, Lu J. Unlocking the Potential: Amino Acids' Role in Predicting and Exploring Therapeutic Avenues for Type 2 Diabetes Mellitus. Metabolites 2023; 13:1017. [PMID: 37755297 PMCID: PMC10535527 DOI: 10.3390/metabo13091017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), imposes a significant global burden with adverse clinical outcomes and escalating healthcare expenditures. Early identification of biomarkers can facilitate better screening, earlier diagnosis, and the prevention of diabetes. However, current clinical predictors often fail to detect abnormalities during the prediabetic state. Emerging studies have identified specific amino acids as potential biomarkers for predicting the onset and progression of diabetes. Understanding the underlying pathophysiological mechanisms can offer valuable insights into disease prevention and therapeutic interventions. This review provides a comprehensive summary of evidence supporting the use of amino acids and metabolites as clinical biomarkers for insulin resistance and diabetes. We discuss promising combinations of amino acids, including branched-chain amino acids, aromatic amino acids, glycine, asparagine and aspartate, in the prediction of T2DM. Furthermore, we delve into the mechanisms involving various signaling pathways and the metabolism underlying the role of amino acids in disease development. Finally, we highlight the potential of targeting predictive amino acids for preventive and therapeutic interventions, aiming to inspire further clinical investigations and mitigate the progression of T2DM, particularly in the prediabetic stage.
Collapse
Affiliation(s)
- Yilan Ding
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.D.); (S.W.)
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuangyuan Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.D.); (S.W.)
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieli Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.D.); (S.W.)
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
10
|
Abstract
Amino acid dysregulation has emerged as an important driver of disease progression in various contexts. l-Serine lies at a central node of metabolism, linking carbohydrate metabolism, transamination, glycine, and folate-mediated one-carbon metabolism to protein synthesis and various downstream bioenergetic and biosynthetic pathways. l-Serine is produced locally in the brain but is sourced predominantly from glycine and one-carbon metabolism in peripheral tissues via liver and kidney metabolism. Compromised regulation or activity of l-serine synthesis and disposal occurs in the context of genetic diseases as well as chronic disease states, leading to low circulating l-serine levels and pathogenesis in the nervous system, retina, heart, and aging muscle. Dietary interventions in preclinical models modulate sensory neuropathy, retinopathy, tumor growth, and muscle regeneration. A serine tolerance test may provide a quantitative readout of l-serine homeostasis that identifies patients who may be susceptible to neuropathy or responsive to therapy.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, USA; ,
| |
Collapse
|
11
|
Mihaylova MM, Chaix A, Delibegovic M, Ramsey JJ, Bass J, Melkani G, Singh R, Chen Z, Ja WW, Shirasu-Hiza M, Latimer MN, Mattison JA, Thalacker-Mercer AE, Dixit VD, Panda S, Lamming DW. When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy aging. Cell Metab 2023; 35:1114-1131. [PMID: 37392742 PMCID: PMC10528391 DOI: 10.1016/j.cmet.2023.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
An epidemic of obesity has affected large portions of the world, increasing the risk of developing many different age-associated diseases, including cancer, cardiovascular disease, and diabetes. In contrast with the prevailing notion that "a calorie is just a calorie," there are clear differences, within and between individuals, in the metabolic response to different macronutrient sources. Recent findings challenge this oversimplification; calories from different macronutrient sources or consumed at different times of day have metabolic effects beyond their value as fuel. Here, we summarize discussions conducted at a recent NIH workshop that brought together experts in calorie restriction, macronutrient composition, and time-restricted feeding to discuss how dietary composition and feeding schedule impact whole-body metabolism, longevity, and healthspan. These discussions may provide insights into the long-sought molecular mechanisms engaged by calorie restriction to extend lifespan, lead to novel therapies, and potentially inform the development of a personalized food-as-medicine approach to healthy aging.
Collapse
Affiliation(s)
- Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University, Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, Columbus, OH, USA.
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mirela Delibegovic
- Aberdeen Cardiovascular and Diabetes Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill Health Campus, Aberdeen, UK
| | - Jon J Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Girish Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rajat Singh
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - William W Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Michele Shirasu-Hiza
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anna E Thalacker-Mercer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Satchidananda Panda
- Regulatory Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
12
|
Okut H, Lu Y, Palmer ND, Chen YDI, Taylor KD, Norris JM, Lorenzo C, Rotter JI, Langefeld CD, Wagenknecht LE, Bowden DW, Ng MCY. Metabolomic profiling of glucose homeostasis in African Americans: the Insulin Resistance Atherosclerosis Family Study (IRAS-FS). Metabolomics 2023; 19:35. [PMID: 37005925 PMCID: PMC10068644 DOI: 10.1007/s11306-023-01984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/04/2023] [Indexed: 04/04/2023]
Abstract
INTRODUCTION African Americans are at increased risk for type 2 diabetes. OBJECTIVES This work aimed to examine metabolomic signature of glucose homeostasis in African Americans. METHODS We used an untargeted liquid chromatography-mass spectrometry metabolomic approach to comprehensively profile 727 plasma metabolites among 571 African Americans from the Insulin Resistance Atherosclerosis Family Study (IRAS-FS) and investigate the associations between these metabolites and both the dynamic (SI, insulin sensitivity; AIR, acute insulin response; DI, disposition index; and SG, glucose effectiveness) and basal (HOMA-IR and HOMA-B) measures of glucose homeostasis using univariate and regularized regression models. We also compared the results with our previous findings in the IRAS-FS Mexican Americans. RESULTS We confirmed increased plasma metabolite levels of branched-chain amino acids and their metabolic derivatives, 2-aminoadipate, 2-hydroxybutyrate, glutamate, arginine and its metabolic derivatives, carbohydrate metabolites, and medium- and long-chain fatty acids were associated with insulin resistance, while increased plasma metabolite levels in the glycine, serine and threonine metabolic pathway were associated with insulin sensitivity. We also observed a differential ancestral effect of glutamate on glucose homeostasis with significantly stronger effects observed in African Americans than those previously observed in Mexican Americans. CONCLUSION We extended the observations that metabolites are useful biomarkers in the identification of prediabetes in individuals at risk of type 2 diabetes in African Americans. We revealed, for the first time, differential ancestral effect of certain metabolites (i.e., glutamate) on glucose homeostasis traits. Our study highlights the need for additional comprehensive metabolomic studies in well-characterized multiethnic cohorts.
Collapse
Affiliation(s)
- Hayrettin Okut
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Population Health, University of Kansas School of Medicine-Wichita, Wichita, KS, USA
| | - Yingchang Lu
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nicholette D Palmer
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yii-Der Ida Chen
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jill M Norris
- Departments of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Carlos Lorenzo
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Carl D Langefeld
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Donald W Bowden
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Maggie C Y Ng
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Division of Genetic Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Ferguson D, Eichler SJ, Yiew NKH, Colca JR, Cho K, Patti GJ, Shew TM, Lutkewitte AJ, Mukherjee S, McCommis KS, Niemi NM, Finck BN. Mitochondrial pyruvate carrier inhibition initiates metabolic crosstalk to stimulate branched chain amino acid catabolism. Mol Metab 2023; 70:101694. [PMID: 36801448 PMCID: PMC9989691 DOI: 10.1016/j.molmet.2023.101694] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
OBJECTIVE The mitochondrial pyruvate carrier (MPC) has emerged as a therapeutic target for treating insulin resistance, type 2 diabetes, and nonalcoholic steatohepatitis (NASH). We evaluated whether MPC inhibitors (MPCi) might correct impairments in branched chain amino acid (BCAA) catabolism, which are predictive of developing diabetes and NASH. METHODS Circulating BCAA concentrations were measured in people with NASH and type 2 diabetes, who participated in a recent randomized, placebo-controlled Phase IIB clinical trial to test the efficacy and safety of the MPCi MSDC-0602K (EMMINENCE; NCT02784444). In this 52-week trial, patients were randomly assigned to placebo (n = 94) or 250 mg MSDC-0602K (n = 101). Human hepatoma cell lines and mouse primary hepatocytes were used to test the direct effects of various MPCi on BCAA catabolism in vitro. Lastly, we investigated how hepatocyte-specific deletion of MPC2 affects BCAA metabolism in the liver of obese mice and MSDC-0602K treatment of Zucker diabetic fatty (ZDF) rats. RESULTS In patients with NASH, MSDC-0602K treatment, which led to marked improvements in insulin sensitivity and diabetes, had decreased plasma concentrations of BCAAs compared to baseline while placebo had no effect. The rate-limiting enzyme in BCAA catabolism is the mitochondrial branched chain ketoacid dehydrogenase (BCKDH), which is deactivated by phosphorylation. In multiple human hepatoma cell lines, MPCi markedly reduced BCKDH phosphorylation and stimulated branched chain keto acid catabolism; an effect that required the BCKDH phosphatase PPM1K. Mechanistically, the effects of MPCi were linked to activation of the energy sensing AMP-dependent protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) kinase signaling cascades in vitro. BCKDH phosphorylation was reduced in liver of obese, hepatocyte-specific MPC2 knockout (LS-Mpc2-/-) mice compared to wild-type controls concomitant with activation of mTOR signaling in vivo. Finally, while MSDC-0602K treatment improved glucose homeostasis and increased the concentrations of some BCAA metabolites in ZDF rats, it did not lower plasma BCAA concentrations. CONCLUSIONS These data demonstrate novel cross talk between mitochondrial pyruvate and BCAA metabolism and suggest that MPC inhibition leads to lower plasma BCAA concentrations and BCKDH phosphorylation by activating the mTOR axis. However, the effects of MPCi on glucose homeostasis may be separable from its effects on BCAA concentrations.
Collapse
Affiliation(s)
- Daniel Ferguson
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Sophie J Eichler
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Nicole K H Yiew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Jerry R Colca
- Department of Biomedical Sciences, Western Michigan University School of Medicine, Kalamazoo, MI, Cirius Therapeutics, Kalamazoo, MI, United States
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, United States; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, United States
| | - Gary J Patti
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States; Department of Chemistry, Washington University in St. Louis, United States; Siteman Cancer Center, Washington University in St. Louis, United States; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, United States
| | - Trevor M Shew
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Andrew J Lutkewitte
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Sandip Mukherjee
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States
| | - Kyle S McCommis
- Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, United States
| | - Natalie M Niemi
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, United States
| | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St. Louis, United States.
| |
Collapse
|
14
|
Handzlik MK, Gengatharan JM, Frizzi KE, McGregor GH, Martino C, Rahman G, Gonzalez A, Moreno AM, Green CR, Guernsey LS, Lin T, Tseng P, Ideguchi Y, Fallon RJ, Chaix A, Panda S, Mali P, Wallace M, Knight R, Gantner ML, Calcutt NA, Metallo CM. Insulin-regulated serine and lipid metabolism drive peripheral neuropathy. Nature 2023; 614:118-124. [PMID: 36697822 PMCID: PMC9891999 DOI: 10.1038/s41586-022-05637-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.
Collapse
Affiliation(s)
- Michal K Handzlik
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jivani M Gengatharan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katie E Frizzi
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace H McGregor
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Cameron Martino
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Gibraan Rahman
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Antonio Gonzalez
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana M Moreno
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Courtney R Green
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Lucie S Guernsey
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Patrick Tseng
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | | | - Nigel A Calcutt
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Christian M Metallo
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Liu Y, Gan L, Zhao B, Yu K, Wang Y, Männistö S, Weinstein SJ, Huang J, Albanes D. Untargeted metabolomic profiling identifies serum metabolites associated with type 2 diabetes in a cross-sectional study of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Am J Physiol Endocrinol Metab 2023; 324:E167-E175. [PMID: 36516224 PMCID: PMC9925157 DOI: 10.1152/ajpendo.00287.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes (T2D) is a complex chronic disease with substantial phenotypic heterogeneity affecting millions of individuals. Yet, its relevant metabolites and etiological pathways are not fully understood. The aim of this study is to assess a broad spectrum of metabolites related to T2D in a large population-based cohort. We conducted a metabolomic analysis of 4,281 male participants within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. The serum metabolomic analysis was performed using an LC-MS/GC-MS platform. Associations between 1,413 metabolites and T2D were examined using linear regression, controlling for important baseline risk factors. Standardized β-coefficients and standard errors (SEs) were computed to estimate the difference in metabolite concentrations. We identified 74 metabolites that were significantly associated with T2D based on the Bonferroni-corrected threshold (P < 3.5 × 10-5). The strongest signals associated with T2D were of carbohydrates origin, including glucose, 1,5-anhydroglucitol (1,5-AG), and mannose (β = 0.34, -0.91, and 0.41, respectively; all P < 10-75). We found several chemical class pathways that were significantly associated with T2D, including carbohydrates (P = 1.3 × 10-11), amino acids (P = 2.7 × 10-6), energy (P = 1.5 × 10-4), and xenobiotics (P = 1.2 × 10-3). The strongest subpathway associations were seen for fructose-mannose-galactose metabolism, glycolysis-gluconeogenesis-pyruvate metabolism, fatty acid metabolism (acyl choline), and leucine-isoleucine-valine metabolism (all P < 10-8). Our findings identified various metabolites and candidate chemical class pathways that can be characterized by glycolysis and gluconeogenesis metabolism, fructose-mannose-galactose metabolism, branched-chain amino acids, diacylglycerol, acyl cholines, fatty acid oxidation, and mitochondrial dysfunction.NEW & NOTEWORTHY These metabolomic patterns may provide new additional evidence and potential insights relevant to the molecular basis of insulin resistance and the etiology of T2D.
Collapse
Affiliation(s)
- Yuzhao Liu
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Gan
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yangang Wang
- Department of Endocrinology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
16
|
Role of Impaired Glycolysis in Perturbations of Amino Acid Metabolism in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24021724. [PMID: 36675238 PMCID: PMC9863464 DOI: 10.3390/ijms24021724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The most frequent alterations in plasma amino acid concentrations in type 1 and type 2 diabetes are decreased L-serine and increased branched-chain amino acid (BCAA; valine, leucine, and isoleucine) levels. The likely cause of L-serine deficiency is decreased synthesis of 3-phosphoglycerate, the main endogenous precursor of L-serine, due to impaired glycolysis. The BCAA levels increase due to decreased supply of pyruvate and oxaloacetate from glycolysis, enhanced supply of NADH + H+ from beta-oxidation, and subsequent decrease in the flux through the citric acid cycle in muscles. These alterations decrease the supply of α-ketoglutarate for BCAA transamination and the activity of branched-chain keto acid dehydrogenase, the rate-limiting enzyme in BCAA catabolism. L-serine deficiency contributes to decreased synthesis of phospholipids and increased synthesis of deoxysphinganines, which play a role in diabetic neuropathy, impaired homocysteine disposal, and glycine deficiency. Enhanced BCAA levels contribute to increased levels of aromatic amino acids (phenylalanine, tyrosine, and tryptophan), insulin resistance, and accumulation of various metabolites, whose influence on diabetes progression is not clear. It is concluded that amino acid concentrations should be monitored in patients with diabetes, and systematic investigation is needed to examine the effects of L-serine and glycine supplementation on diabetes progression when these amino acids are decreased.
Collapse
|
17
|
Distinct factors associated with short-term and long-term weight loss induced by low-fat or low-carbohydrate diet intervention. Cell Rep Med 2022; 3:100870. [PMID: 36516846 PMCID: PMC9798029 DOI: 10.1016/j.xcrm.2022.100870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
To understand what determines the success of short- and long-term weight loss, we conduct a secondary analysis of dietary, metabolic, and molecular data collected from 609 participants before, during, and after a 1-year weight-loss intervention with either a healthy low-carbohydrate (HLC) or a healthy low-fat (HLF) diet. Through systematic analysis of multidomain datasets, we find that dietary adherence and diet quality, not just caloric restriction, are important for short-term weight loss in both diets. Interestingly, we observe minimal dietary differences between those who succeeded in long-term weight loss and those who did not. Instead, proteomic and gut microbiota signatures significantly differ between these two groups at baseline. Moreover, the baseline respiratory quotient may suggest a specific diet for better weight-loss outcomes. Overall, the identification of these dietary, molecular, and metabolic factors, common or unique to the HLC and HLF diets, provides a roadmap for developing individualized weight-loss strategies.
Collapse
|
18
|
Canet F, Christensen JJ, Victor VM, Hustad KS, Ottestad I, Rundblad A, Sæther T, Dalen KT, Ulven SM, Holven KB, Telle-Hansen VH. Glycated Proteins, Glycine, Acetate, and Monounsaturated Fatty Acids May Act as New Biomarkers to Predict the Progression of Type 2 Diabetes: Secondary Analyses of a Randomized Controlled Trial. Nutrients 2022; 14:5165. [PMID: 36501195 PMCID: PMC9738624 DOI: 10.3390/nu14235165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.
Collapse
Affiliation(s)
- Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
| | - Jacob J. Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Victor M. Victor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 40617 Valencia, Spain
- Department of Physiology, School of Medicine, University of Valencia, Av Blasco Ibáñez 13, 46010 Valencia, Spain
| | - Kristin S. Hustad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Thomas Sæther
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Stine M. Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Kirsten B. Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital Rikshospitalet, 0424 Oslo, Norway
| | - Vibeke H. Telle-Hansen
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
19
|
Gadgil MD, Ingram KH, Appiah D, Rudd J, Whitaker KM, Bennett WL, Shikany JM, Jacobs DR, Lewis CE, Gunderson EP. Prepregnancy Protein Source and BCAA Intake Are Associated with Gestational Diabetes Mellitus in the CARDIA Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192114142. [PMID: 36361016 PMCID: PMC9658365 DOI: 10.3390/ijerph192114142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/03/2023]
Abstract
Diet quality and protein source are associated with type 2 diabetes, however relationships with GDM are less clear. This study aimed to determine whether prepregnancy diet quality and protein source are associated with gestational diabetes mellitus (GDM). Participants were 1314 Black and White women without diabetes, who had at least one birth during 25 years of follow-up in the Coronary Artery Risk Development in Young Adults (CARDIA) cohort study. The CARDIA A Priori Diet Quality Score (APDQS) was assessed in the overall cohort at enrollment and again at Year 7. Protein source and branched-chain amino acid (BCAA) intake were assessed only at the Year 7 exam (n = 565). Logistic regression analysis was used to determine associations between prepregnancy dietary factors and GDM. Women who developed GDM (n = 161) were more likely to have prepregnancy obesity and a family history of diabetes (p < 0.05). GDM was not associated with prepregnancy diet quality at enrollment (Year 0) (odds ratio [OR]: 1.01; 95% confidence interval [CI] 0.99, 1.02) or Year 7 (odds ratio [OR]: 0.97; 95% confidence interval [CI] 0.94, 1.00) in an adjusted model. Conversely, BCAA intake (OR:1.59, 95% CI 1.03, 2.43) and animal protein intake (OR: 1.06, 95% CI 1.02, 1.10) as a proportion of total protein intake, were associated with increased odds of GDM, while proportion of plant protein was associated with decreased odds of GDM (OR: 0.95, 95% CI 0.91, 0.99). In conclusion, GDM is strongly associated with source of prepregnancy dietary protein intake but not APDQS in the CARDIA study.
Collapse
Affiliation(s)
- Meghana D. Gadgil
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Katherine H. Ingram
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Duke Appiah
- Department of Public Health, Texas Tech University Health Sciences Center of Statistics and Analytical Sciences, Lubbock, TX 79409, USA
| | - Jessica Rudd
- Department of Statistics and Analytical Sciences, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Kara M. Whitaker
- Department of Health and Human Physiology, Department of Epidemiology, University of Iowa, Iowa City, IA 52242, USA
| | - Wendy L. Bennett
- Division of General Internal Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - James M. Shikany
- Division of Preventive Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David R. Jacobs
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cora E. Lewis
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| |
Collapse
|
20
|
Bruno J, Verano M, Vanegas SM, Weinshel E, Ren-Fielding C, Lofton H, Fielding G, Schwack B, Chua DL, Wang C, Li H, Alemán JO. Body Weight and Prandial Variation of Plasma Metabolites in Subjects Undergoing Gastric Band-Induced Weight Loss. OBESITY MEDICINE 2022; 33:100434. [PMID: 37216066 PMCID: PMC10195098 DOI: 10.1016/j.obmed.2022.100434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
BACKGROUND Bariatric procedures are safe and effective treatments for obesity, inducing rapid and sustained loss of excess body weight. Laparoscopic adjustable gastric banding (LAGB) is unique among bariatric interventions in that it is a reversible procedure in which normal gastrointestinal anatomy is maintained. Knowledge regarding how LAGB effects change at the metabolite level is limited. OBJECTIVES To delineate the impact of LAGB on fasting and postprandial metabolite responses using targeted metabolomics. SETTING Individuals undergoing LAGB at NYU Langone Medical Center were recruited for a prospective cohort study. METHODS We prospectively analyzed serum samples from 18 subjects at baseline and 2 months after LAGB under fasting conditions and after a 1-hour mixed meal challenge. Plasma samples were analyzed on a reverse-phase liquid chromatography time-of-flight mass spectrometry metabolomics platform. The main outcome measure was their serum metabolite profile. RESULTS We quantitatively detected over 4,000 metabolites and lipids. Metabolite levels were altered in response to surgical and prandial stimuli, and metabolites within the same biochemical class tended to behave similarly in response to either stimulus. Plasma levels of lipid species and ketone bodies were statistically decreased after surgery whereas amino acid levels were affected more by prandial status than surgical condition. CONCLUSIONS Changes in lipid species and ketone bodies postoperatively suggest improvements in the rate and efficiency of fatty acid oxidation and glucose handling after LAGB. Further investigation is necessary to understand how these findings relate to surgical response, including long term weight maintenance, and obesity-related comorbidities such as dysglycemia and cardiovascular disease.
Collapse
Affiliation(s)
- Joanne Bruno
- Laboratory of Translational Obesity Research, 435 East 30 St, New York, NY 10016
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - Michael Verano
- Laboratory of Translational Obesity Research, 435 East 30 St, New York, NY 10016
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - Sally M. Vanegas
- Laboratory of Translational Obesity Research, 435 East 30 St, New York, NY 10016
- Department of Population Health and Comprehensive Program in Obesity Research, New York University Grossman School of Medicine, New York, NY 10016
| | - Elizabeth Weinshel
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - Christine Ren-Fielding
- Department of Surgery, New York University Grossman School of Medicine, New York, NY 10016
| | - Holly Lofton
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
- Department of Surgery, New York University Grossman School of Medicine, New York, NY 10016
| | - George Fielding
- Department of Surgery, New York University Grossman School of Medicine, New York, NY 10016
| | - Bradley Schwack
- Department of Surgery, New York University Grossman School of Medicine, New York, NY 10016
| | - Deborah L Chua
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| | - Chan Wang
- Department of Population Health and Comprehensive Program in Obesity Research, New York University Grossman School of Medicine, New York, NY 10016
| | - Huilin Li
- Department of Population Health and Comprehensive Program in Obesity Research, New York University Grossman School of Medicine, New York, NY 10016
| | - José O. Alemán
- Laboratory of Translational Obesity Research, 435 East 30 St, New York, NY 10016
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
21
|
He W, Dam TV, Thøgersen R, Hansen M, Bertram HC. Fluctuations in Metabolites and Bone Markers Across the Menstrual Cycle in Eumenorrheic Women and Oral Contraceptive Users. J Clin Endocrinol Metab 2022; 107:1577-1588. [PMID: 35213728 DOI: 10.1210/clinem/dgac112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Little is known about changes in circulating metabolites during the menstrual cycle and how use of oral contraceptives (OCs) affects these changes. OBJECTIVES To study fluctuations in circulating metabolite and bone marker levels during the menstrual/pill cycle in eumenorrheic women and OC users. METHODS Plasma samples were collected from 28 eumenorrheic women and 10 OC users at 7 to 9 time points across a menstrual/pill cycle. Longitudinal and cross-sectional analyses were performed to examine the cycle- and OC-induced variations in the plasma metabolite and bone turnover marker levels. RESULTS In eumenorrheic women, plasma levels of alanine, glutamine, threonine, and tyrosine varied significantly across the menstrual cycle, and all dropped to the lowest level around day 21 of the menstrual cycle. These amino acid concentrations were negatively correlated with fluctuations in progesterone and/or estrogen levels. A between-group analysis showed that plasma levels of alanine, glutamine, glycine, proline, and tyrosine were lower in OC users than in nonusers. Concomitantly, plasma C-terminal telopeptide of type I collagen (CTX) and N-terminal propeptide of type I procollagen (PINP) levels were lower in OC users. Intriguingly, when all data were pooled, variations in CTX and PINP levels were positively correlated with fluctuations in proline and glycine concentrations (r > 0.5 or 0.3 < r < 0.5, P < 0.05). CONCLUSIONS The menstrual cycle and the use of OCs alter plasma levels of metabolites and bone turnover markers in young women. While the impact of these findings remains to be established, the lower glycine level among OC users and the accompanying lower CTX level supports that the use of OCs lowers collagen turnover in young women and may thereby have long-term implications for bone health among OC users.
Collapse
Affiliation(s)
- Weiwei He
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | - Tine Vrist Dam
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | | - Mette Hansen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
22
|
Imenshahidi M, Hossenzadeh H. Effects of glycine on metabolic syndrome components: a review. J Endocrinol Invest 2022; 45:927-939. [PMID: 35013990 DOI: 10.1007/s40618-021-01720-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/03/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Glycine is the simplest and major amino acid in humans. It is mainly generated in the liver and kidney and is used to produce collagen, creatine, glucose and purine. It is also involved in immune function, anti-inflammatory processes and anti-oxidation reactions. Here, we reviewed the current evidence supporting the role of glycine in the development and treatment of metabolic syndrome components. METHODS We searched Scopus, PubMed and EMBASE databases for papers concerning glycine and metabolic syndrome. RESULTS Available evidence shows that the amount of glycine synthesized in vivo is insufficient to meet metabolic demands in these species. Plasma glycine levels are lower in subjects with metabolic syndrome than in healthy individuals. Interventions such as lifestyle modification, exercise, weight loss, or drugs that improve manifestations of metabolic syndrome remarkably increase circulating glycine concentrations. CONCLUSION Glycine supplementation improves various components of metabolic syndrome including diabetes, obesity, hyperlipidemia and hypertension. In the future, the use of glycine may have a significant clinical impact on the treatment of patients with metabolic syndrome.
Collapse
Affiliation(s)
- M Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Hossenzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Su L, Kong X, Loo S, Gao Y, Liu B, Su X, Dalan R, Ma J, Ye L. Thymosin beta-4 improves endothelial function and reparative potency of diabetic endothelial cells differentiated from patient induced pluripotent stem cells. Stem Cell Res Ther 2022; 13:13. [PMID: 35012642 PMCID: PMC8751378 DOI: 10.1186/s13287-021-02687-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prior studies show that signature phenotypes of diabetic human induced pluripotent stem cells derived endothelial cells (dia-hiPSC-ECs) are disrupted glycine homeostasis, increased senescence, impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. In the current study, we aimed to assess the role of thymosin β-4 (Tb-4) on endothelial function using dia-hiPSC-ECs as disease model of endothelial dysfunction. METHODS AND RESULTS Using dia-hiPSC-ECs as models of endothelial dysfunction, we determined the effect of Tb-4 on cell proliferation, senescence, cyto-protection, protein expression of intercellular adhesion molecule-1 (ICAM-1), secretion of endothelin-1 and MMP-1, mitochondrial membrane potential, and cyto-protection in vitro and angiogenic potential for treatment of ischemic limb disease in a mouse model of type 2 diabetes mellitus (T2DM) in vivo. We found that 600 ng/mL Tb4 significantly up-regulated AKT activity and Bcl-XL protein expression, enhanced dia-hiPSC-EC viability and proliferation, limited senescence, reduced endothelin-1 and MMP-1 secretion, and improved reparative potency of dia-hiPSC-ECs for treatment of ischemic limb disease in mice with T2DM. However, Tb4 had no effect on improving mitochondrial membrane potential and glycine homeostasis and reducing intercellular adhesion molecule-1 protein expression in dia-hiPSC-ECs. CONCLUSIONS Tb-4 improves endothelial dysfunction through enhancing hiPSC-EC viability, reducing senescence and endothelin-1 production, and improves angiogenic potency in diabetes.
Collapse
Affiliation(s)
- Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Szejie Loo
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609 Singapore
| | - Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bingli Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210029 China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, 169609 Singapore
| |
Collapse
|
24
|
Jog R, Chen G, Wang J, Leff T. Hormonal regulation of glycine decarboxylase and its relationship to oxidative stress. Physiol Rep 2021; 9:e14991. [PMID: 34342168 PMCID: PMC8329434 DOI: 10.14814/phy2.14991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
In both humans and rodent models, circulating glycine levels are significantly reduced in obesity, glucose intolerance, type II diabetes, and non-alcoholic fatty liver disease. The glycine cleavage system and its rate-limiting enzyme, glycine decarboxylase (GLDC), is a major determinant of plasma glycine levels. The goals of this study were to determine if the increased expression of GLDC contributes to the reduced plasma glycine levels seen in disease states, to characterize the hormonal regulation of GLDC gene expression, and to determine if altered GLDC expression has physiological effects that might affect the development of diabetes. The findings presented here show that hepatic GLDC gene expression is elevated in mouse models of obesity and diabetes, as well as by fasting. We demonstrated that GLDC gene expression is strongly regulated by the metabolic hormones glucagon and insulin, and we identified the signaling pathways involved in this regulation. Finally, we found that GLDC expression is linked to glutathione levels, with increased expression associated with elevated levels of glutathione and reduced expression associated with a suppression of glutathione and increased cellular ROS levels. These findings suggest that the hormonal regulation of GLDC contributes not only to the changes in circulating glycine levels seen in metabolic disease, but also affects glutathione production, possibly as a defense against metabolic disease-associated oxidative stress.
Collapse
Affiliation(s)
- Ruta Jog
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Guohua Chen
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Jian Wang
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| | - Todd Leff
- Department of PathologyCenter for Integrative Endocrine and Metabolic ResearchWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
25
|
Chen Y, Wang N, Dong X, Zhu J, Chen Y, Jiang Q, Fu C. Associations between serum amino acids and incident type 2 diabetes in Chinese rural adults. Nutr Metab Cardiovasc Dis 2021; 31:2416-2425. [PMID: 34158241 DOI: 10.1016/j.numecd.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS Some amino acids (AAs) may be associated with type 2 diabetes (T2DM). This study aimed to determine the associations of individual AAs with the development of T2DM in rural Chinese adults. METHODS AND RESULTS A cohort study of 1199 individuals aged 18 years or older was conducted from 2006 to 2008 in a rural community of Deqing, China, a repeated survey was done in 2015 and data linkage with the electronic health records system was performed each year for identifying new T2DM cases. A high-performance liquid chromatography approach was used to measure the baseline serum concentrations of 15 AAs. Cox proportional hazards models were used to examine the associations between AAs and the risk of incident T2DM. A total of 98 new T2DM cases were identified during the follow-up of 12 years on average. Among 15 AAs, proline was associated with an increased risk of incident T2DM after adjusted for age, sex, body mass index, fasting plasma glucose, family history of T2DM, smoking status, alcohol use, and history of hypertension, the adjusted hazard ratio for 1-standard deviation increment was 1.20 (95% confidence interval: 1.00, 1.43). The association tended to be more marked in subjects younger than 60 years and overweight/obese subjects. Among participants without hypertension, proline and phenylalanine were associated with an increased risk of incident T2DM, while aspartic acid was associated with a decreased risk. CONCLUSION Serum proline was associated with the risk of incident T2DM in rural Chinese adults and might be a potential predictor.
Collapse
Affiliation(s)
- Yun Chen
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Na Wang
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiaolian Dong
- Deqing County Center for Disease Control and Prevention, Deqing, 313299, China
| | - Jianfu Zhu
- Deqing County Center for Disease Control and Prevention, Deqing, 313299, China
| | - Yue Chen
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1G 5Z3, Canada
| | - Qingwu Jiang
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Chaowei Fu
- School of Public Health, Key Laboratory of Public Health Safety, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Shen Z, Liu P, Sun Q, Li Y, Acharya R, Li X, Sun C. FTO inhibits UPR mt-induced apoptosis by activating JAK2/STAT3 pathway and reducing m6A level in adipocytes. Apoptosis 2021; 26:474-487. [PMID: 34212271 DOI: 10.1007/s10495-021-01683-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
As a nucleic acid demethylase, Fat and obesity associated gene (FTO) plays a vital role in modulating adipose metabolism. However, it is still unknown how FTO affects apoptosis in adipocytes. In this study, we found that overexpression of FTO inhibited the expression of pro-apoptosis factors Caspase-3, Caspase-9 and Bax and mitochondrial unfolded protein response (UPRmt) markers HSP60 and ClpP in vivo and in vitro. Particularly, overexpression of FTO inhibited mitochondria-dependent apoptosis in adipocytes. Further studies revealed that FTO suppressed UPRmt by reducing HSP60 mRNA N6-methyladenosine (m6A) modification. Moreover, FTO inhibited the activation of Caspase-3 via JAK2/STAT3 signaling pathway in adipocytes. Further experiments showed that pro-apoptosis gene Bax was upregulated by UPRmt-activated PKR/eIF2α/ATF5 axis in adipocytes. In summary, this study confirms that FTO reduces adipocytes apoptosis by activiting JAK2/STAT3 signaling pathway and inhibiting UPRmt, revealing a novel mechanism of FTO on adipocytes apoptosis, which provides some new potential therapy for treating obesity and related metabolic syndromes.
Collapse
Affiliation(s)
- Zhentong Shen
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Ping Liu
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Qian Sun
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Yizhou Li
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Rabin Acharya
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Xinjian Li
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China
| | - Chao Sun
- College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China. .,College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450000, Henan, China. .,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, NO.22 Xinong Road, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
27
|
A Preliminary Study Showing the Impact of Genetic and Dietary Factors on GC-MS-Based Plasma Metabolome of Patients with and without PROX1-Genetic Predisposition to T2DM up to 5 Years Prior to Prediabetes Appearance. Curr Issues Mol Biol 2021; 43:513-528. [PMID: 34209638 PMCID: PMC8929026 DOI: 10.3390/cimb43020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Risk factors for type 2 diabetes mellitus (T2DM) consist of a combination of an unhealthy, imbalanced diet and genetic factors that may interact with each other. Single nucleotide polymorphism (SNP) in the prospero homeobox 1 (PROX1) gene is a strong genetic susceptibility factor for this metabolic disorder and impaired β-cell function. As the role of this gene in T2DM development remains unclear, novel approaches are needed to advance the understanding of the mechanisms of T2DM development. Therefore, in this study, for the first time, postprandial changes in plasma metabolites were analysed by GC–MS in nondiabetic men with different PROX1 genotypes up to 5 years prior to prediabetes appearance. Eighteen contestants (12 with high risk (HR) and 6 with low risk (LR) genotype) participated in high-carbohydrate (HC) and normo-carbohydrate (NC) meal-challenge tests. Our study concluded that both meal-challenge tests provoked changes in 15 plasma metabolites (amino acids, carbohydrates, fatty acids and others) in HR, but not LR genotype carriers. Postprandial changes in the levels of some of the detected metabolites may be a source of potential specific early disturbances possibly associated with the future development of T2DM. Thus, accurate determination of these metabolites can be important for the early diagnosis of this metabolic disease.
Collapse
|
28
|
Su L, Kong X, Loo SJ, Gao Y, Kovalik JP, Su X, Ma J, Ye L. Diabetic Endothelial Cells Differentiated From Patient iPSCs Show Dysregulated Glycine Homeostasis and Senescence Associated Phenotypes. Front Cell Dev Biol 2021; 9:667252. [PMID: 34136485 PMCID: PMC8201091 DOI: 10.3389/fcell.2021.667252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Liping Su
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Sze Jie Loo
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular & Metabolic Disorders, Duke-National University of Singapore, Singapore, Singapore
| | - Xiaofei Su
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Ye
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Babygirija R, Lamming DW. The regulation of healthspan and lifespan by dietary amino acids. TRANSLATIONAL MEDICINE OF AGING 2021; 5:17-30. [PMID: 34263088 PMCID: PMC8277109 DOI: 10.1016/j.tma.2021.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a key macronutrient and source of essential macromolecules, dietary protein plays a significant role in health. For many years, protein-rich diets have been recommended as healthy due to the satiety-inducing and muscle-building effects of protein, as well as the ability of protein calories to displace allegedly unhealthy calories from fats and carbohydrates. However, clinical studies find that consumption of dietary protein is associated with an increased risk of multiple diseases, especially diabetes, while studies in rodents have demonstrated that protein restriction can promote metabolic health and even lifespan. Emerging evidence suggests that the effects of dietary protein on health and longevity are not mediated simply by protein quantity but are instead mediated by protein quality - the specific amino acid composition of the diet. Here, we discuss how dietary protein and specific amino acids including methionine, the branched chain amino acids (leucine, isoleucine, and valine), tryptophan and glycine regulate metabolic health, healthspan, and aging, with attention to the specific molecular mechanisms that may participate in these effects. Finally, we discuss the potential applicability of these findings to promoting healthy aging in humans.
Collapse
Affiliation(s)
- Reji Babygirija
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
30
|
Thalacker-Mercer A, Blum J. Discovery and application of dietary compounds to optimize human health, a focus on skeletal muscle regeneration. Curr Opin Biotechnol 2021; 70:131-135. [PMID: 33971586 DOI: 10.1016/j.copbio.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
Worldwide, the number of persons over the age of 65 years and those at risk of malnutrition (over and under) is growing, and the prevalence of diet-related chronic disease is at a record high. Pathologies that are linked to poor nutrition underlie the leading causes of death. Safe and effective strategies to improve human health outcomes are urgently required. Identification of nutrient needs for health outcomes has led to the development of food products, supplements, and dietary pattern recommendations. Application of these nutrient-based therapies have the potential to optimize clinical outcomes, such as tissue regeneration post-skeletal muscle trauma. However, despite progress in identifying nutrient needs there is often a delay in the utilization of products in clinical practice.
Collapse
Affiliation(s)
- Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Jamie Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
31
|
Matsumoto S, Nakamura T, Nagamatsu F, Kido J, Sakamoto R, Nakamura K. Metabolic and biological changes in children with obesity and diabetes. World J Meta-Anal 2021; 9:153-163. [DOI: 10.13105/wjma.v9.i2.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
The World Health Organization has stated that obesity in childhood is one of the most serious public health challenges of the 21st century. Overweightness and obesity in early childhood lead to a higher risk of overweightness and obesity in adulthood, thus conferring an increased risk of chronic inflammatory conditions, including type 2 diabetes mellitus, cardiovascular diseases, non-alcoholic fatty liver disease, and some cancers. Therefore, metabolome analysis, targeted at screening and intervening in childhood obesity, is very important. Recent studies have indicated that amino acid and lipid metabolism could influence metabolic pathways in children with obesity. For this review, we searched clinical data addressing metabolomic profiles and insulin resistance (IR) in children with obesity from inception to February 2021 in Medline, Web of Science, and Scopus. According to our search, branched-chain amino acids (BCAAs), aromatic amino acids, and acylcarnitines have reportedly been associated with IR as biomarkers for diabetes in children. BCAAs, tyrosine, and phenylalanine could be predictors of the future development of diabetes in nondiabetic subjects. In addition, it is well known that insulin regulates BCAA metabolism, and BCAA is a biomarker for IR. To interpret the mechanism behind metabolic changes in obesity, it is very important to understand the pathways and combinations related with amino acid, lipid and glucose metabolism. In this review, we summarize studies on metabolic changes to understand metabolomics in children with obesity.
Collapse
Affiliation(s)
- Shirou Matsumoto
- Department of Pediatrics, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomomi Nakamura
- Department of Perinatal Care Unit, Kumamoto University Hospital, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fusa Nagamatsu
- Department of Pediatrics, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jun Kido
- Department of Pediatrics, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Rieko Sakamoto
- Department of Perinatal Care Unit, Kumamoto University Hospital, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kimotoshi Nakamura
- Department of Pediatrics, Faculty of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
32
|
Matsumoto S, Nakamura T, Nagamatsu F, Kido J, Sakamoto R, Nakamura K. Metabolic and biological changes in children with obesity and diabetes. World J Meta-Anal 2021. [DOI: 10.13105/wjma.v9.i2.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Lim J, Alam U, Cuthbertson D, Wilding J. Design of a randomised controlled trial: does indirect calorimetry energy information influence weight loss in obesity? BMJ Open 2021; 11:e044519. [PMID: 33762240 PMCID: PMC7993246 DOI: 10.1136/bmjopen-2020-044519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Respiratory quotient (RQ) provides an indication of the relative balance of carbohydrate and fat oxidation. RQ could serve as an early biomarker of negative energy balance during weight loss. Restriction of energy intake relative to total daily energy requirements produces a negative energy balance which can lead to a fall in RQ, accompanied by a decrease in resting energy expenditure (REE). However, the net change in body weight does not usually match predicted weight change due to intraindividual metabolic adaptations. Our aim is to determine the effectiveness of utilising EE information from indirect calorimetry during weight loss intervention. METHODS AND ANALYSIS We will undertake an assessor-blinded, parallel-group randomised controlled trial of 105 adults with obesity randomised in 1:1 ratio to receive either standard weight management care (SC) or EE information plus SC (INT) during a 24-week multicomponent weight management programme. The primary outcome is difference in weight loss between INT and SC group at 24 weeks. Secondary outcomes include: change in RQ, REE, glycaemic variability, and appetite-relating gut hormones (glucagon-like peptide 1, gastric inhibitory polypeptide, peptide YY). Generalised linear mixed models (intention to treat) will assess outcomes for treatment (INT vs SC), time (baseline, 24 weeks) and the treatment-by-time interaction. This will be the first study to evaluate impact of utilising measured REE and RQ on the lifestyle-based intensive intervention programme. ETHICS AND DISSEMINATION Ethics approval was obtained from the Health Research Authority and the North West Research Ethics Committee (18/NW/0645). Results from this trial will be disseminated through publication in peer-reviewed journals, national and international presentations. TRIAL REGISTRATION NUMBERS NCT03638895; UoL001379.
Collapse
Affiliation(s)
- Jonathan Lim
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool Institute of Ageing and Chronic Disease, Liverpool, UK
- Department of Diabetes & Endocrinology, University Hospital Aintree, Liverpool, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool Institute of Ageing and Chronic Disease, Liverpool, UK
- Department of Diabetes & Endocrinology, University Hospital Aintree, Liverpool, UK
| | - Daniel Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool Institute of Ageing and Chronic Disease, Liverpool, UK
- Department of Diabetes & Endocrinology, University Hospital Aintree, Liverpool, UK
| | - John Wilding
- Department of Cardiovascular and Metabolic Medicine, University of Liverpool Institute of Ageing and Chronic Disease, Liverpool, UK
- Department of Diabetes & Endocrinology, University Hospital Aintree, Liverpool, UK
| |
Collapse
|
34
|
Gradisteanu Pircalabioru G, Corcionivoschi N, Gundogdu O, Chifiriuc MC, Marutescu LG, Ispas B, Savu O. Dysbiosis in the Development of Type I Diabetes and Associated Complications: From Mechanisms to Targeted Gut Microbes Manipulation Therapies. Int J Mol Sci 2021; 22:2763. [PMID: 33803255 PMCID: PMC7967220 DOI: 10.3390/ijms22052763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Globally, we are facing a worrying increase in type 1 diabetes mellitus (T1DM) incidence, with onset at younger age shedding light on the need to better understand the mechanisms of disease and step-up prevention. Given its implication in immune system development and regulation of metabolism, there is no surprise that the gut microbiota is a possible culprit behind T1DM pathogenesis. Additionally, microbiota manipulation by probiotics, prebiotics, dietary factors and microbiota transplantation can all modulate early host-microbiota interactions by enabling beneficial microbes with protective potential for individuals with T1DM or at high risk of developing T1DM. In this review, we discuss the challenges and perspectives of translating microbiome data into clinical practice. Nevertheless, this progress will only be possible if we focus our interest on developing numerous longitudinal, multicenter, interventional and double-blind randomized clinical trials to confirm their efficacy and safety of these therapeutic approaches.
Collapse
Affiliation(s)
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast BT9 5PX, UK;
| | - Ozan Gundogdu
- Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK;
| | - Mariana-Carmen Chifiriuc
- Research Institute of University of Bucharest (ICUB), 300645 Bucharest, Romania; (G.G.P.); (L.G.M.); (B.I.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | | | - Bogdan Ispas
- Research Institute of University of Bucharest (ICUB), 300645 Bucharest, Romania; (G.G.P.); (L.G.M.); (B.I.)
| | - Octavian Savu
- “N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 2nd District, 020042 Bucharest, Romania;
- Department of Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 5th District, 050474 Bucharest, Romania
| |
Collapse
|
35
|
Hou Y, Guo W, Fan T, Li B, Ge W, Gao R, Wang J. Advanced Research of Abdominal Aortic Aneurysms on Metabolism. Front Cardiovasc Med 2021; 8:630269. [PMID: 33614752 PMCID: PMC7892590 DOI: 10.3389/fcvm.2021.630269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/05/2021] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with a high risk of death, seriously threatening the life and health of people. The specific pathogenesis of AAA is still not fully understood. In recent years, researchers have found that amino acid, lipid, and carbohydrate metabolism disorders play important roles in the occurrence and development of AAA. This review is aimed to summarize the latest research progress of the relationship between AAA progression and body metabolism. The body metabolism is closely related to the occurrence and development of AAA. It is necessary to further investigate the pathogenesis of AAA from the perspective of metabolism to provide theoretical basis for AAA diagnosis and drug development.
Collapse
Affiliation(s)
- Yangfeng Hou
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wenjun Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tianfei Fan
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Bolun Li
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Weipeng Ge
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
36
|
Nagao K, Kimura T. Use of plasma-free amino acids as biomarkers for detecting and predicting disease risk. Nutr Rev 2020; 78:79-85. [DOI: 10.1093/nutrit/nuaa086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Abstract
This paper reviews developments regarding the use of plasma-free amino acid (PFAA) profiles as biomarkers for detecting and predicting disease risk. This work was initiated and first published in 2006 and was subsequently developed by Ajinomoto Co., Inc. After commercialization in 2011, PFAA-based tests were adopted in over 1500 clinics and hospitals in Japan, and numerous clinician-led studies have been performed to validate these tests. Evidence is accumulating that PFAA profiles can be used for diabetes prediction and evaluation of frailty; in particular, decreased plasma essential amino acids could contribute to the pathophysiology of severe frailty. Integration of PFAA evaluation as a biomarker and effective essential amino acid supplementation, which improves physical and mental functions in the elderly, could facilitate the development of precision nutrition, including personalized solutions. This present review provides the background for the technology as well as more recent clinical findings, and offers future possibilities regarding the implementation of precision nutrition.
Collapse
Affiliation(s)
- Kenji Nagao
- the Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
37
|
White PJ, Lapworth AL, McGarrah RW, Kwee LC, Crown SB, Ilkayeva O, An J, Carson MW, Christopher BA, Ball JR, Davies MN, Kjalarsdottir L, George T, Muehlbauer MJ, Bain JR, Stevens RD, Koves TR, Muoio DM, Brozinick JT, Gimeno RE, Brosnan MJ, Rolph TP, Kraus WE, Shah SH, Newgard CB. Muscle-Liver Trafficking of BCAA-Derived Nitrogen Underlies Obesity-Related Glycine Depletion. Cell Rep 2020; 33:108375. [PMID: 33176135 PMCID: PMC8493998 DOI: 10.1016/j.celrep.2020.108375] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/23/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023] Open
Abstract
Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner. Inhibition of the BCAA transaminase (BCAT) enzymes depletes plasma pools of alanine and raises glycine levels. In high-fat-fed ZFRs, dietary glycine supplementation raises urinary acyl-glycine content and lowers circulating triglycerides but also results in accumulation of long-chain acyl-coenzyme As (acyl-CoAs), lower 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in muscle, and no improvement in glucose tolerance. Collectively, these studies frame a mechanism for explaining obesity-related glycine depletion and also provide insight into the impact of glycine supplementation on systemic glucose, lipid, and amino acid metabolism.
Collapse
Affiliation(s)
- Phillip J White
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Robert W McGarrah
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lydia Coulter Kwee
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Scott B Crown
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jie An
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Matthew W Carson
- Diabetes Therapeutic Area, Lilly Research Laboratories, a Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Bridgette A Christopher
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - James R Ball
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Michael N Davies
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Lilja Kjalarsdottir
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Tabitha George
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Robert D Stevens
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Timothy R Koves
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Joseph T Brozinick
- Diabetes Therapeutic Area, Lilly Research Laboratories, a Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - Ruth E Gimeno
- Diabetes Therapeutic Area, Lilly Research Laboratories, a Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - M Julia Brosnan
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - Timothy P Rolph
- CV and Metabolic Diseases Research Unit, Pfizer, Cambridge, MA, USA
| | - William E Kraus
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Svati H Shah
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA; Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA; Division of Endocrinology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
38
|
Nilsen MS, Jersin RÅ, Ulvik A, Madsen A, McCann A, Svensson PA, Svensson MK, Nedrebø BG, Gudbrandsen OA, Tell GS, Kahn CR, Ueland PM, Mellgren G, Dankel SN. 3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism. Diabetes 2020; 69:1903-1916. [PMID: 32586980 PMCID: PMC7968520 DOI: 10.2337/db19-1174] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Circulating branched-chain amino acids (BCAAs) associate with insulin resistance and type 2 diabetes. 3-Hydroxyisobutyrate (3-HIB) is a catabolic intermediate of the BCAA valine. In this study, we show that in a cohort of 4,942 men and women, circulating 3-HIB is elevated according to levels of hyperglycemia and established type 2 diabetes. In complementary cohorts with measures of insulin resistance, we found positive correlates for circulating 3-HIB concentrations with HOMA2 of insulin resistance, as well as a transient increase in 3-HIB followed by a marked decrease after bariatric surgery and weight loss. During differentiation, both white and brown adipocytes upregulate BCAA utilization and release increasing amounts of 3-HIB. Knockdown of the 3-HIB-forming enzyme 3-hydroxyisobutyryl-CoA hydrolase decreases release of 3-HIB and lipid accumulation in both cell types. Conversely, addition of 3-HIB to white and brown adipocyte cultures increases fatty acid uptake and modulated insulin-stimulated glucose uptake in a time-dependent manner. Finally, 3-HIB treatment decreases mitochondrial oxygen consumption and generation of reactive oxygen species in white adipocytes, while increasing these measures in brown adipocytes. Our data establish 3-HIB as a novel adipocyte-derived regulator of adipocyte subtype-specific functions strongly linked to obesity, insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Mona S Nilsen
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Regine Å Jersin
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | | | - André Madsen
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Health and Care Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bjørn G Nedrebø
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haugesund Hospital, Haugesund, Norway
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - C R Kahn
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
39
|
Walejko JM, Chelliah A, Keller-Wood M, Wasserfall C, Atkinson M, Gregg A, Edison AS. Diabetes Leads to Alterations in Normal Metabolic Transitions of Pregnancy as Revealed by Time-Course Metabolomics. Metabolites 2020; 10:E350. [PMID: 32867274 PMCID: PMC7570364 DOI: 10.3390/metabo10090350] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Women with diabetes during pregnancy are at increased risk of poor maternal and neonatal outcomes. Despite this, the effects of pre-gestational (PGDM) or gestational diabetes (GDM) on metabolism during pregnancy are not well understood. In this study, we utilized metabolomics to identify serum metabolic changes in women with and without diabetes during pregnancy and the cord blood at birth. We observed elevations in tricarboxylic acid (TCA) cycle intermediates, carbohydrates, ketones, and lipids, and a decrease in amino acids across gestation in all individuals. In early gestation, PGDM had elevations in branched-chain amino acids and sugars compared to controls, whereas GDM had increased lipids and decreased amino acids during pregnancy. In both GDM and PGDM, carbohydrate and amino acid pathways were altered, but in PGDM, hemoglobin A1c and isoleucine were significantly increased compared to GDM. Cord blood from GDM and PGDM newborns had similar increases in carbohydrates and choline metabolism compared to controls, and these alterations were not maternal in origin. Our results revealed that PGDM and GDM have distinct metabolic changes during pregnancy. A better understanding of diabetic metabolism during pregnancy can assist in improved management and development of therapeutics and help mitigate poor outcomes in both the mother and newborn.
Collapse
Affiliation(s)
- Jacquelyn M. Walejko
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Anushka Chelliah
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Texas Health Science Center at Houston, UT Health, Houston, TX 77030, USA;
| | - Maureen Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA;
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; (C.W.); (M.A.)
| | - Mark Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, University of Florida, Gainesville, FL 32610, USA; (C.W.); (M.A.)
| | - Anthony Gregg
- Department of Obstetrics and Gynecology, Baylor University, Dallas, TX 75246, USA;
| | - Arthur S. Edison
- Departments of Genetics and Biochemistry & Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
40
|
Gu N, Dong A, Gao L, Xie C, Hou P, Wang W, Zhu S, Yao C, Zhang J, Guo X. Effectiveness and safety of pulsatile intravenous insulin therapy for the improvement of respiratory quotient in Chinese patients with diabetes mellitus. Exp Ther Med 2020; 19:3069-3075. [PMID: 32256794 PMCID: PMC7086298 DOI: 10.3892/etm.2020.8563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Pulsatile intravenous insulin therapy (PIVIT) is a means of imitating naturally occurring insulin pulses artificially. It is thought to improve carbohydrate metabolism, which can be assessed using the respiratory quotient (RQ). The aim of this present study was to assess the efficacy and safety of PIVIT for the improvement of RQ in Chinese patients with diabetes mellitus (DM). This 12-week, multi-center, prospective, randomized, open-label, parallel-group study involved 110 DM patients (both type 1 and type 2) whose RQ was <0.8. Of these, 53 patients formed the control group, in which standard anti-diabetic therapy was maintained, and 54 patients formed the treatment group, which underwent weekly PIVIT in addition to the administration of standard anti-diabetic therapy. RQ was evaluated monthly in control subjects, and before and after every PIVIT treatment in the treatment group. After weekly PIVIT for 12 weeks, the mean RQ increased from 0.70 to 0.90 in the treatment group, but did not change in the control group. The percentage of subjects reporting adverse events (AEs) was 31.5% (17/54) in the treatment group and 9.43% (5/53) in the control group (P=0.0053). The most frequently reported AE (by 12 subjects) was a gastroenteric reaction when these individuals were receiving 50% glucose during the PIVIT treatment. The majority of AEs were mild and did not interfere with the ongoing treatment. Thus, PIVIT can be viewed as tolerated and effective for the improvement of RQ in Chinese DM patients. This study was retrospectively registered with the Chinese Clinical Trial Registry (http://www.chictr.org.cn) on November 13th 2019 (registration no. ChiCTR1900027510).
Collapse
Affiliation(s)
- Nan Gu
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Aimei Dong
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Lei Gao
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chenying Xie
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Peiyi Hou
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Wenbo Wang
- Department of Endocrinology, Peking University Shougang Hospital, Beijing 100144, P.R. China
| | - Sainan Zhu
- Department of Biostatistics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Chen Yao
- Department of Biostatistics, Peking University First Hospital, Beijing 100034, P.R. China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
41
|
Hernandez-Baixauli J, Quesada-Vázquez S, Mariné-Casadó R, Gil Cardoso K, Caimari A, Del Bas JM, Escoté X, Baselga-Escudero L. Detection of Early Disease Risk Factors Associated with Metabolic Syndrome: A New Era with the NMR Metabolomics Assessment. Nutrients 2020; 12:E806. [PMID: 32197513 PMCID: PMC7146483 DOI: 10.3390/nu12030806] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The metabolic syndrome is a multifactorial disease developed due to accumulation and chronification of several risk factors associated with disrupted metabolism. The early detection of the biomarkers by NMR spectroscopy could be helpful to prevent multifactorial diseases. The exposure of each risk factor can be detected by traditional molecular markers but the current biomarkers have not been enough precise to detect the primary stages of disease. Thus, there is a need to obtain novel molecular markers of pre-disease stages. A promising source of new molecular markers are metabolomics standing out the research of biomarkers in NMR approaches. An increasing number of nutritionists integrate metabolomics into their study design, making nutrimetabolomics one of the most promising avenues for improving personalized nutrition. This review highlight the major five risk factors associated with metabolic syndrome and related diseases including carbohydrate dysfunction, dyslipidemia, oxidative stress, inflammation, and gut microbiota dysbiosis. Together, it is proposed a profile of metabolites of each risk factor obtained from NMR approaches to target them using personalized nutrition, which will improve the quality of life for these patients.
Collapse
Affiliation(s)
- Julia Hernandez-Baixauli
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Katherine Gil Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
- Universitat Rovira i Virgili; Department of Biochemistry and Biotechnology, Ctra. De Valls, s/n, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Josep M Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| | - Laura Baselga-Escudero
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain; (J.H.-B.); (S.Q.-V.); (R.M.-C.); (K.G.C.); (A.C.); (J.M.D.B.)
| |
Collapse
|
42
|
Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients 2019; 11:nu11061356. [PMID: 31208147 PMCID: PMC6627940 DOI: 10.3390/nu11061356] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
Glycine is the proteinogenic amino-acid of lowest molecular weight, harboring a hydrogen atom as a side-chain. In addition to being a building-block for proteins, glycine is also required for multiple metabolic pathways, such as glutathione synthesis and regulation of one-carbon metabolism. Although generally viewed as a non-essential amino-acid, because it can be endogenously synthesized to a certain extent, glycine has also been suggested as a conditionally essential amino acid. In metabolic disorders associated with obesity, type 2 diabetes (T2DM), and non-alcoholic fatty liver disease (NAFLDs), lower circulating glycine levels have been consistently observed, and clinical studies suggest the existence of beneficial effects induced by glycine supplementation. The present review aims at synthesizing the recent advances in glycine metabolism, pinpointing its main metabolic pathways, identifying the causes leading to glycine deficiency-especially in obesity and associated metabolic disorders-and evaluating the potential benefits of increasing glycine availability to curb the progression of obesity and obesity-related metabolic disturbances. This study focuses on the importance of diet, gut microbiota, and liver metabolism in determining glycine availability in obesity and associated metabolic disorders.
Collapse
|
43
|
Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal metabolomics, and Alzheimer's risk factors among 1,111 cohort participants. Genet Epidemiol 2019; 43:657-674. [PMID: 31104335 DOI: 10.1002/gepi.22211] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 11/11/2022]
Abstract
Although Alzheimer's disease (AD) is highly heritable, genetic variants are known to be associated with AD only explain a small proportion of its heritability. Genetic factors may only convey disease risk in individuals with certain environmental exposures, suggesting that a multiomics approach could reveal underlying mechanisms contributing to complex traits, such as AD. We developed an integrated network to investigate relationships between metabolomics, genomics, and AD risk factors using Wisconsin Registry for Alzheimer's Prevention participants. Analyses included 1,111 non-Hispanic Caucasian participants with whole blood expression for 11,376 genes (imputed from dense genome-wide genotyping), 1,097 fasting plasma metabolites, and 17 AD risk factors. A subset of 155 individuals also had 364 fastings cerebral spinal fluid (CSF) metabolites. After adjusting each of these 12,854 variables for potential confounders, we developed an undirected graphical network, representing all significant pairwise correlations upon adjusting for multiple testing. There were many instances of genes being indirectly linked to AD risk factors through metabolites, suggesting that genes may influence AD risk through particular metabolites. Follow-up analyses suggested that glycine mediates the relationship between carbamoyl-phosphate synthase 1 and measures of cardiovascular and diabetes risk, including body mass index, waist-hip ratio, inflammation, and insulin resistance. Further, 38 CSF metabolites explained more than 60% of the variance of CSF levels of tau, a detrimental protein that accumulates in the brain of AD patients and is necessary for its diagnosis. These results further our understanding of underlying mechanisms contributing to AD risk while demonstrating the utility of generating and integrating multiple omics data types.
Collapse
Affiliation(s)
- Burcu F Darst
- University of Wisconsin, Madison, Wisconsin.,Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Qiongshi Lu
- University of Wisconsin, Madison, Wisconsin.,Department of Biostatistics & Medical Informatics, Madison, Wisconsin
| | - Sterling C Johnson
- University of Wisconsin, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Geriatric Research Education and Clinical Center, William S. Middleton Memorial VA Hospital, Madison, Wisconsin.,Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Corinne D Engelman
- University of Wisconsin, Madison, Wisconsin.,Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
44
|
Arneth B, Arneth R, Shams M. Metabolomics of Type 1 and Type 2 Diabetes. Int J Mol Sci 2019; 20:ijms20102467. [PMID: 31109071 PMCID: PMC6566263 DOI: 10.3390/ijms20102467] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Type 1 and type 2 diabetes mellitus (DM) are chronic diseases that affect nearly 425 million people worldwide, leading to poor health outcomes and high health care costs. High-throughput metabolomics screening can provide vital insight into the pathophysiological pathways of DM and help in managing its effects. The primary aim of this study was to contribute to the understanding and management of DM by providing reliable evidence of the relationships between metabolites and type 1 diabetes (T1D) and metabolites and type 2 diabetes (T2D). Information for the study was obtained from the PubMed, MEDLINE, and EMBASE databases, and leads to additional articles that were obtained from the reference lists of the studies examined. The results from the selected studies were used to assess the relationships between diabetes (T1D and/or T2D) and metabolite markers—such as glutamine, glycine, and aromatic amino acids—in patients. Seventy studies were selected from the three databases and from the reference lists in the records retrieved. All studies explored associations between various metabolites and T1D or T2D. This review identified several plasma metabolites associated with T2D prediabetes and/or T1D and/or T2D in humans. The evidence shows that metabolites such as glucose, fructose, amino acids, and lipids are typically altered in individuals with T1D and T2D. These metabolites exhibit significant predictive associations with T2D prediabetes, T1D, and/or T2D. The current review suggests that changes in plasma metabolites can be identified by metabolomic techniques and used to identify and analyze T1D and T2D biomarkers. The results of the metabolomic studies can be used to help create effective interventions for managing these diseases.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany.
| | - Rebekka Arneth
- Clinics for Internal Medicine 2, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University. Giessen, 35392 Giessen, Germany.
| | - Mohamed Shams
- Department of Pharmacy Practice, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
45
|
Bagheri M, Djazayery A, Farzadfar F, Qi L, Yekaninejad MS, Aslibekyan S, Chamari M, Hassani H, Koletzko B, Uhl O. Plasma metabolomic profiling of amino acids and polar lipids in Iranian obese adults. Lipids Health Dis 2019; 18:94. [PMID: 30967146 PMCID: PMC6456979 DOI: 10.1186/s12944-019-1037-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Obesity, widely recognized as a serious health concern, is characterized by profoundly altered metabolism. However, the intermediate metabolites involved in this change remain largely unknown. OBJECTIVE We conducted targeted metabolomics profiling to identify moieties associated with adult obesity. METHODS In this case-control study of Iranian adults, 200 obese patients were compared with 100 controls based on 104 metabolites profiled by a targeted metabolomic approach using liquid chromatography coupled to triple quadrupole mass spectrometry (LC-MS/MS). The analysis comprised acylcarnitines, diacyl-phosphatidylcholines (PCaa), acyl-alkyl-phosphatidylcholines (PCae), sphingomyelins (SM), lyso-phospholipids (LPC) and amino acids. We performed multivariable linear regression to identify metabolites associated with obesity, adjusting for age, sex, total energy intake, total physical activity, smoking, and alcohol consumption. The Bonferroni correction was used to adjust for multiple testing. RESULTS A pattern of 19 metabolites was significantly associated with obesity. Branched chain amino acids, alanine, glutamic acid, proline, tyrosine LPCa C16:1, PCaa C32:1, PCaa C32:2 and PCaa C38:3 were positively, while serine, asparagine, LPCa C18:1, LPCa C18:2, LPCe C18:0, PCae C34:3, PCae C38:4 and PCae C40:6 were negatively associated with obesity (all p < 0.00048). CONCLUSIONS A metabolomic profile containing 9 amino acids and 10 polar lipids may serve as a potential biomarker of adult obesity. Further studies are warranted to replicate these findings as well as investigate potential changes in this profile after weight reduction.
Collapse
Affiliation(s)
- Minoo Bagheri
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Abolghasem Djazayery
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Lu Qi
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Maryam Chamari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Hossein Hassani
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, Tehran, 1416-643931 Iran
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Ludwig-Maximilians-Universität München, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany
| | - Olaf Uhl
- Division of Metabolic and Nutritional Medicine, Ludwig-Maximilians-Universität München, Dr. von Hauner Children’s Hospital, 80337 Munich, Germany
| |
Collapse
|
46
|
Al-Aama JY, Al Mahdi HB, Salama MA, Bakur KH, Alhozali A, Mosli HH, Bahijri SM, Bahieldin A, Willmitzer L, Edris S. Detection of Secondary Metabolites as Biomarkers for the Early Diagnosis and Prevention of Type 2 Diabetes. Diabetes Metab Syndr Obes 2019; 12:2675-2684. [PMID: 31908508 PMCID: PMC6930579 DOI: 10.2147/dmso.s215528] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Type 2 diabetes, or T2D, is a metabolic disease that results in insulin resistance. In the present study, we hypothesize that metabolomic analysis in blood samples of T2D patients sharing the same ethnic background can recover new metabolic biomarkers and pathways that elucidate early diagnosis and predict the incidence of T2D. METHODS The study included 34 T2D patients and 33 healthy volunteers recruited between the years 2012 and 2013; the secondary metabolites were extracted from blood samples and analyzed using HPLC. RESULTS Principal coordinate analysis and hierarchical clustering patterns for the uncharacterized negatively and positively charged metabolites indicated that samples from healthy individuals and T2D patients were largely separated with only a few exceptions. The inspection of the top 10% secondary metabolites indicated an increase in fucose, tryptophan and choline levels in the T2D patients, while there was a reduction in carnitine, homoserine, allothreonine, serine and betaine as compared to healthy individuals. These metabolites participate mainly in three cross-talking pathways, namely "glucagon signaling", "glycine, serine and threonine" and "bile secretion". Reduced level of carnitine in T2D patients is known to participate in the impaired insulin-stimulated glucose utilization, while reduced betaine level in T2D patients is known as a common feature of this metabolic syndrome and can result in the reduced glycine production and the occurrence of insulin resistance. However, reduced levels of serine, homoserine and allothrionine, substrates for glycine production, indicate the depletion of glycine, thus possibly impair insulin sensitivity in T2D patients of the present study. CONCLUSION We introduce serine, homoserine and allothrionine as new potential biomarkers of T2D.
Collapse
Affiliation(s)
- Jumana Y Al-Aama
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
- King Abdulaziz University Faculty of Medicine, Department of Genetic Medicine, Jeddah, KSA
- Correspondence: Sherif Edris; Jumana Y Al-Aama King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSATel +966 593 66 23 84 Email ;
| | - Hadiah B Al Mahdi
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
| | - Mohammed A Salama
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
| | - Khadija H Bakur
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
- King Abdulaziz University Faculty of Medicine, Department of Genetic Medicine, Jeddah, KSA
| | - Amani Alhozali
- King Abdulaziz University, Faculty of Medicine, Department of Endocrinology and Metabolism, Jeddah, KSA
| | - Hala H Mosli
- King Abdulaziz University, Faculty of Medicine, Department of Endocrinology and Metabolism, Jeddah, KSA
| | - Suhad M Bahijri
- King Abdulaziz University, Faculty of Medicine, Department of Clinical Biochemistry, Jeddah, KSA
| | - Ahmed Bahieldin
- King Abdulaziz University, Faculty of Science, Biological Sciences Department, Jeddah, KSA
- Ain Shams University, Department of Genetics, Cairo, Egypt
| | - Lothar Willmitzer
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, Molecular Physiology, Golm, DE, Germany
| | - Sherif Edris
- King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSA
- King Abdulaziz University, Faculty of Science, Biological Sciences Department, Jeddah, KSA
- Ain Shams University, Department of Genetics, Cairo, Egypt
- Correspondence: Sherif Edris; Jumana Y Al-Aama King Abdulaziz University, Princess Al Jawhara Albrahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, KSATel +966 593 66 23 84 Email ;
| |
Collapse
|
47
|
Tan HC, Hsu JW, Khoo CM, Tai ES, Yu S, Chacko S, Lai OF, Jahoor F. Alterations in branched-chain amino acid kinetics in nonobese but insulin-resistant Asian men. Am J Clin Nutr 2018; 108:1220-1228. [PMID: 30358799 DOI: 10.1093/ajcn/nqy208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Background Branched-chain amino acids (BCAAs) are elevated in the insulin-resistant (IR) state. The reasons for this increase remain unclear, but it may be related to abnormalities in BCAA metabolism and free fatty acid (FFA) metabolism. Objective In this study, we quantified BCAA and FFA kinetics of IR and insulin-sensitive (IS) nonobese Asian men with the use of stable-isotope tracers. We hypothesized that in addition to greater substrate flux, the BCAA oxidative pathway is also impaired to account for the higher plasma BCAA concentration in the IR state. Design We recruited 12 IR and 14 IS nonobese and healthy Asian men. Oral-glucose-tolerance tests (OGTTs) were performed to quantify insulin sensitivity, and subjects underwent 2 stable-isotope infusion studies. [U-13C6]Leucine was infused to measure leucine flux and oxidation as indexes of BCAA metabolism, whereas [U-13C16]palmitate was infused to measure palmitate flux and oxidation to represent FFA metabolism, The 2H2O dilution method was used to estimate body composition. Results IR subjects had greater adiposity and significantly higher fasting and post-OGTT glucose and insulin concentrations compared with the IS group. However, none of the subjects were diabetic. Despite similar dietary protein intake, IR subjects had a significantly higher plasma BCAA concentration and greater leucine flux. Leucine oxidation was also greater in the IR group, but the relation between leucine oxidation and flux was significantly weaker in the IR group than in the IS group (r = 0.530 compared with 0.695, P < 0.0388 for differences between slope). FFA oxidation was, however, unaffected despite higher FFA flux in the IR group. Conclusion The higher plasma BCAA concentration in healthy nonobese individuals with IR is associated with a weaker relation between BCAA oxidation and BCAA flux and this occurs in the presence of accelerated FFA flux and oxidation.
Collapse
Affiliation(s)
| | - Jean W Hsu
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Chin Meng Khoo
- Department of Medicine, National University Hospital, Singapore
| | - E Shyong Tai
- Department of Medicine, National University Hospital, Singapore
| | | | - Shaji Chacko
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Oi Fah Lai
- Clinical Research, Singapore General Hospital, Singapore
| | - Farook Jahoor
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
48
|
Waaijenborg S, Korobko O, Willems van Dijk K, Lips M, Hankemeier T, Wilderjans TF, Smilde AK, Westerhuis JA. Fusing metabolomics data sets with heterogeneous measurement errors. PLoS One 2018; 13:e0195939. [PMID: 29698490 PMCID: PMC5919515 DOI: 10.1371/journal.pone.0195939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 11/18/2022] Open
Abstract
Combining different metabolomics platforms can contribute significantly to the discovery of complementary processes expressed under different conditions. However, analysing the fused data might be hampered by the difference in their quality. In metabolomics data, one often observes that measurement errors increase with increasing measurement level and that different platforms have different measurement error variance. In this paper we compare three different approaches to correct for the measurement error heterogeneity, by transformation of the raw data, by weighted filtering before modelling and by a modelling approach using a weighted sum of residuals. For an illustration of these different approaches we analyse data from healthy obese and diabetic obese individuals, obtained from two metabolomics platforms. Concluding, the filtering and modelling approaches that both estimate a model of the measurement error did not outperform the data transformation approaches for this application. This is probably due to the limited difference in measurement error and the fact that estimation of measurement error models is unstable due to the small number of repeats available. A transformation of the data improves the classification of the two groups.
Collapse
Affiliation(s)
- Sandra Waaijenborg
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Oksana Korobko
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Ko Willems van Dijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam Lips
- Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Hankemeier
- Division Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands
| | - Tom F. Wilderjans
- Methodology & Statistics Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
- Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium
| | - Age K. Smilde
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan A. Westerhuis
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Department of Statistics, North-West University, Potchefstroom, South Africa
- * E-mail:
| |
Collapse
|
49
|
Palmnäs MSA, Kopciuk KA, Shaykhutdinov RA, Robson PJ, Mignault D, Rabasa-Lhoret R, Vogel HJ, Csizmadi I. Serum Metabolomics of Activity Energy Expenditure and its Relation to Metabolic Syndrome and Obesity. Sci Rep 2018; 8:3308. [PMID: 29459697 PMCID: PMC5818610 DOI: 10.1038/s41598-018-21585-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Modifiable lifestyle factors, including exercise and activity energy expenditure (AEE), may attenuate the unfavorable health effects of obesity, such as risk factors of metabolic syndrome (MetS). However, the underlying mechanisms are not clear. In this study we sought to investigate whether the metabolite profiles of MetS and adiposity assessed by body mass index (BMI) and central obesity are inversely correlated with AEE and physical activity. We studied 35 men and 47 women, aged 30-60 years, using doubly labeled water to derive AEE and the Sedentary Time and Activity Reporting Questionnaire (STAR-Q) to determine the time spent in moderate and vigorous physical activity. Proton nuclear magnetic resonance spectroscopy was used for serum metabolomics analysis. Serine and glycine were found in lower concentrations in participants with more MetS risk factors and greater adiposity. However, serine and glycine concentrations were higher with increasing activity measures. Metabolic pathway analysis and recent literature suggests that the lower serine and glycine concentrations in the overweight/obese state could be a consequence of serine entering de novo sphingolipid synthesis. Taken together, higher levels of AEE and physical activity may play a crucial part in improving metabolic health in men and women with and without MetS risk factors.
Collapse
Affiliation(s)
- Marie S A Palmnäs
- University of Calgary, Department of Biochemistry and Molecular Biology, Calgary, T2N 1N4, Canada
- University of Calgary, Department of Biological Sciences, Calgary, T2N 1N4, Canada
| | - Karen A Kopciuk
- University of Calgary, Department of Oncology, Calgary, T2N 1N4, Canada
- University of Calgary, Department of Mathematics and Statistics, Calgary, T2N 1N4, Canada
| | | | - Paula J Robson
- C-MORE, CancerControl Alberta, Alberta Health Services, Calgary, T5J 3H1, Canada
| | - Diane Mignault
- Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7, Canada
- Université de Montréal, Département de Nutrition, Montréal, H3T 1J4, Canada
| | - Rémi Rabasa-Lhoret
- Institut de Recherches Cliniques de Montréal, Montréal, H2W 1R7, Canada
- Université de Montréal, Département de Nutrition, Montréal, H3T 1J4, Canada
| | - Hans J Vogel
- University of Calgary, Department of Biochemistry and Molecular Biology, Calgary, T2N 1N4, Canada.
- University of Calgary, Department of Biological Sciences, Calgary, T2N 1N4, Canada.
| | - Ilona Csizmadi
- University of Calgary, Department of Oncology, Calgary, T2N 1N4, Canada.
- University of Calgary, Community Health Sciences, Calgary, T2N 1N4, Canada.
| |
Collapse
|
50
|
Gar C, Rottenkolber M, Prehn C, Adamski J, Seissler J, Lechner A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit Rev Clin Lab Sci 2017; 55:21-32. [PMID: 29239245 DOI: 10.1080/10408363.2017.1414143] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Presently, routine screening misses many cases of prediabetes and early type 2 diabetes (T2D). Therefore, better biomarkers are needed for a simple and early detection of abnormalities of glucose metabolism and prediction of future T2D. Possible candidates for this include plasma or serum amino acids because glucose and amino acid metabolism are closely connected. This review presents the available evidence of this connectivity and discusses its clinical implications. First, we examine the underlying physiological, pre-analytical, and analytical issues. Then, we summarize results of human studies that evaluate amino acid levels as markers for insulin resistance, prediabetes, and future incident T2D. Finally, we illustrate the interconnection of amino acid levels and metabolic syndrome with our own data from a deeply phenotyped human cohort. We also discuss how amino acids may contribute to the pathophysiology of T2D. We conclude that elevated branched-chain amino acids and reduced glycine are currently the most robust and consistent amino acid markers for prediabetes, insulin resistance, and future T2D. Yet, we are cautious regarding the clinical potential even of these parameters because their discriminatory power is insufficient and their levels depend not only on glycemia, but also on other components of the metabolic syndrome. The identification of more precise intermediates of amino acid metabolism or combinations with other biomarkers will, therefore, be necessary to obtain in order to develop laboratory tests that can improve T2D screening.
Collapse
Affiliation(s)
- C Gar
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - M Rottenkolber
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - C Prehn
- d Institute of Experimental Genetics, Genome Analysis Center , Helmholtz Zentrum München, German Research Center for Environmental Health , Neuherberg , Germany
| | - J Adamski
- c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany.,d Institute of Experimental Genetics, Genome Analysis Center , Helmholtz Zentrum München, German Research Center for Environmental Health , Neuherberg , Germany.,e Lehrstuhl fu¨r Experimentelle Genetik , Technische Universität München , Freising , Germany
| | - J Seissler
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| | - A Lechner
- a Diabetes Research Group , Medizinische Klinik und Poliklinik IV, Klinikum der Universität München , Munich , Germany.,b Clinical Cooperation Group Type 2 Diabetes , Helmholtz Zentrum München , Neuherberg , Germany.,c Deutsches Zentrum für Diabetesforschung (DZD) , Neuherberg , Germany
| |
Collapse
|