1
|
Lee CS, Shang R, Wang F, Khayambashi P, Wang H, Araujo G, Puri K, Vlodavsky I, Hussein B, Rodrigues B. Heparanase Stimulation of Physiologic Cardiac Hypertrophy Is Suppressed After Chronic Diabetes, Resulting in Cardiac Remodeling and Dysfunction. Diabetes 2024; 73:1300-1316. [PMID: 38771953 DOI: 10.2337/db24-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
In addition to controlling smooth muscle tone in coronary vessels, endothelial cells also influence subjacent cardiomyocyte growth. Because heparanase, with exclusive expression in endothelial cells, enables extracellular matrix remodeling, angiogenesis, metabolic reprogramming, and cell survival, it is conceivable that it could also encourage development of cardiac hypertrophy. Global heparanase overexpression resulted in physiologic cardiac hypertrophy, likely an outcome of HSPG clustering and activation of hypertrophic signaling. The heparanase autocrine effect of releasing neuregulin-1 could have also contributed to this overexpression. Hyperglycemia induced by streptozotocin-induced diabetes sensitized the heart to flow-induced release of heparanase and neuregulin-1. Despite this excess secretion, progression of diabetes caused significant gene expression changes related to mitochondrial metabolism and cell death that led to development of pathologic hypertrophy and heart dysfunction. Physiologic cardiac hypertrophy was also observed in rats with cardiomyocyte-specific vascular endothelial growth factor B overexpression. When perfused, hearts from these animals released significantly higher amounts of both heparanase and neuregulin-1. However, subjecting these animals to diabetes triggered robust transcriptome changes related to metabolism and a transition to pathologic hypertrophy. Our data suggest that in the absence of mechanisms that support cardiac energy generation and prevention of cell death, as seen after diabetes, there is a transition from physiologic to pathologic cardiac hypertrophy and a decline in cardiac function. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Chae Syng Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rui Shang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Parisa Khayambashi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hualin Wang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gala Araujo
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13199. [PMID: 39081272 PMCID: PMC11286490 DOI: 10.3389/jpps.2024.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Worldwide, the prevalence of obesity and diabetes have increased, with heart disease being their leading cause of death. Traditionally, the management of obesity and diabetes has focused mainly on weight reduction and controlling high blood glucose. Unfortunately, despite these efforts, poor medication management predisposes these patients to heart failure. One instigator for the development of heart failure is how cardiac tissue utilizes different sources of fuel for energy. In this regard, the heart switches from using various substrates, to predominantly using fatty acids (FA). This transformation to using FA as an exclusive source of energy is helpful in the initial stages of the disease. However, over the progression of diabetes this has grave end results. This is because toxic by-products are produced by overuse of FA, which weaken heart function (heart disease). Lipoprotein lipase (LPL) is responsible for regulating FA delivery to the heart, and its function during diabetes has not been completely revealed. In this review, the mechanisms by which LPL regulates fuel utilization by the heart in control conditions and following diabetes will be discussed in an attempt to identify new targets for therapeutic intervention. Currently, as treatment options to directly target diabetic heart disease are scarce, research on LPL may assist in drug development that exclusively targets fuel utilization by the heart and lipid accumulation in macrophages to help delay, prevent, or treat cardiac failure, and provide long-term management of this condition during diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Shang R, Lee CS, Wang H, Dyer R, Noll C, Carpentier A, Sultan I, Alitalo K, Boushel R, Hussein B, Rodrigues B. Reduction in Insulin Uncovers a Novel Effect of VEGFB on Cardiac Substrate Utilization. Arterioscler Thromb Vasc Biol 2024; 44:177-191. [PMID: 38150518 DOI: 10.1161/atvbaha.123.319972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/06/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The heart relies heavily on external fatty acid (FA) for energy production. VEGFB (vascular endothelial growth factor B) has been shown to promote endothelial FA uptake by upregulating FA transporters. However, its impact on LPL (lipoprotein lipase)-mediated lipolysis of lipoproteins, a major source of FA for cardiac use, is unknown. METHODS VEGFB transgenic (Tg) rats were generated by using the α-myosin heavy chain promoter to drive cardiomyocyte-specific overexpression. To measure coronary LPL activity, Langendorff hearts were perfused with heparin. In vivo positron emission tomography imaging with [18F]-triglyceride-fluoro-6-thia-heptadecanoic acid and [11C]-palmitate was used to determine cardiac FA uptake. Mitochondrial FA oxidation was evaluated by high-resolution respirometry. Streptozotocin was used to induce diabetes, and cardiac function was monitored using echocardiography. RESULTS In Tg hearts, the vectorial transfer of LPL to the vascular lumen is obstructed, resulting in LPL buildup within cardiomyocytes, an effect likely due to coronary vascular development with its associated augmentation of insulin action. With insulin insufficiency following fasting, VEGFB acted unimpeded to facilitate LPL movement and increase its activity at the coronary lumen. In vivo PET imaging following fasting confirmed that VEGFB induced a greater FA uptake to the heart from circulating lipoproteins as compared with plasma-free FAs. As this was associated with augmented mitochondrial oxidation, lipid accumulation in the heart was prevented. We further examined whether this property of VEGFB on cardiac metabolism could be useful following diabetes and its associated cardiac dysfunction, with attendant loss of metabolic flexibility. In Tg hearts, diabetes inhibited myocyte VEGFB gene expression and protein secretion together with its downstream receptor signaling, effects that could explain its lack of cardioprotection. CONCLUSIONS Our study highlights the novel role of VEGFB in LPL-derived FA supply and utilization. In diabetes, loss of VEGFB action may contribute toward metabolic inflexibility, lipotoxicity, and development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Hualin Wang
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Roger Dyer
- Department of Pediatrics (R.D.), University of British Columbia, Vancouver
| | - Christophe Noll
- Department of Medicine, Université de Sherbrooke, QC, Canada (C.N., A.C.)
| | - André Carpentier
- Department of Medicine, Université de Sherbrooke, QC, Canada (C.N., A.C.)
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (I.S., K.A.)
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Finland (I.S., K.A.)
| | - Robert Boushel
- School of Kinesiology (R.B.), University of British Columbia, Vancouver
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences (R.S., C.S.L., H.W., B.H., B.R.), University of British Columbia, Vancouver
| |
Collapse
|
4
|
Lee CS, Zhai Y, Shang R, Wong T, Mattison AJ, Cen HH, Johnson JD, Vlodavsky I, Hussein B, Rodrigues B. Flow-Induced Secretion of Endothelial Heparanase Regulates Cardiac Lipoprotein Lipase and Changes Following Diabetes. J Am Heart Assoc 2022; 11:e027958. [PMID: 36416172 PMCID: PMC9851453 DOI: 10.1161/jaha.122.027958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Lipoprotein lipase (LPL)-derived fatty acid is a major source of energy for cardiac contraction. Synthesized in cardiomyocytes, LPL requires translocation to the vascular lumen for hydrolysis of lipoprotein triglyceride, an action mediated by endothelial cell (EC) release of heparanase. We determined whether flow-mediated biophysical forces can cause ECs to secrete heparanase and thus regulate cardiac metabolism. Methods and Results Isolated hearts were retrogradely perfused. Confluent rat aortic ECs were exposed to laminar flow using an orbital shaker. Cathepsin L activity was determined using gelatin-zymography. Diabetes was induced in rats with streptozotocin. Despite the abundance of enzymatically active heparanase in the heart, it was the enzymatically inactive, latent heparanase that was exceptionally responsive to flow-induced release. EC exposed to orbital rotation exhibited a similar pattern of heparanase secretion, an effect that was reproduced by activation of the mechanosensor, Piezo1. The laminar flow-mediated release of heparanase from EC required activation of both the purinergic receptor and protein kinase D, a kinase that assists in vesicular transport of proteins. Heparanase influenced cardiac metabolism by increasing cardiomyocyte LPL displacement along with subsequent replenishment. The flow-induced heparanase secretion was augmented following diabetes and could explain the increased heparin-releasable pool of LPL at the coronary lumen in these diabetic hearts. Conclusions ECs sense fluid shear-stress and communicate this information to subjacent cardiomyocytes with the help of heparanase. This flow-induced mechanosensing and its dynamic control of cardiac metabolism to generate ATP, using LPL-derived fatty acid, is exquisitely adapted to respond to disease conditions, like diabetes.
Collapse
Affiliation(s)
- Chae Syng Lee
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Yajie Zhai
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Rui Shang
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Trevor Wong
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Aurora J. Mattison
- Department of Cellular and Physiological Sciences & Department of SurgeryDiabetes Focus Team, Life Sciences Institute, UBCVancouverBritish ColumbiaCanada
| | - Haoning Howard Cen
- Department of Cellular and Physiological Sciences & Department of SurgeryDiabetes Focus Team, Life Sciences Institute, UBCVancouverBritish ColumbiaCanada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences & Department of SurgeryDiabetes Focus Team, Life Sciences Institute, UBCVancouverBritish ColumbiaCanada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research CenterRappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Bahira Hussein
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| | - Brian Rodrigues
- Faculty of Pharmaceutical SciencesUBCVancouverBritish ColumbiaCanada
| |
Collapse
|
5
|
Shang R, Lal N, Lee CS, Zhai Y, Puri K, Seira O, Boushel RC, Sultan I, Räsänen M, Alitalo K, Hussein B, Rodrigues B. Cardiac-specific VEGFB overexpression reduces lipoprotein lipase activity and improves insulin action in rat heart. Am J Physiol Endocrinol Metab 2021; 321:E753-E765. [PMID: 34747201 DOI: 10.1152/ajpendo.00219.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.
Collapse
Affiliation(s)
- Rui Shang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chae Syng Lee
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yajie Zhai
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karanjit Puri
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Seira
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert C Boushel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ibrahim Sultan
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus Räsänen
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Shang R, Rodrigues B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021; 11:biom11071016. [PMID: 34356640 PMCID: PMC8301904 DOI: 10.3390/biom11071016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Ninety percent of plasma fatty acids (FAs) are contained within lipoprotein-triglyceride, and lipoprotein lipase (LPL) is robustly expressed in the heart. Hence, LPL-mediated lipolysis of lipoproteins is suggested to be a key source of FAs for cardiac use. Lipoprotein clearance by LPL occurs at the apical surface of the endothelial cell lining of the coronary lumen. In the heart, the majority of LPL is produced in cardiomyocytes and subsequently is translocated to the apical luminal surface. Here, vascular LPL hydrolyzes lipoprotein-triglyceride to provide the heart with FAs for ATP generation. This article presents an overview of cardiac LPL, explains how the enzyme works, describes key molecules that regulate its activity and outlines how changes in LPL are brought about by physiological and pathological states such as fasting and diabetes, respectively.
Collapse
|
7
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
8
|
Amin R, Tripathi K, Sanderson RD. Nuclear Heparanase Regulates Chromatin Remodeling, Gene Expression and PTEN Tumor Suppressor Function. Cells 2020; 9:cells9092038. [PMID: 32899927 PMCID: PMC7564302 DOI: 10.3390/cells9092038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase that cleaves heparan sulfate and has been shown in various cancers to promote metastasis, angiogenesis, osteolysis, and chemoresistance. Although heparanase is thought to act predominantly extracellularly or within the cytoplasm, it is also present in the nucleus, where it may function in regulating gene transcription. Using myeloma cell lines, we report here that heparanase enhances chromatin accessibility and confirm a previous report that it also upregulates the acetylation of histones. Employing the Multiple Myeloma Research Foundation CoMMpass database, we demonstrate that patients expressing high levels of heparanase display elevated expression of proteins involved in chromatin remodeling and several oncogenic factors compared to patients expressing low levels of heparanase. These signatures were consistent with the known function of heparanase in driving tumor progression. Chromatin opening and downstream target genes were abrogated by inhibition of heparanase. Enhanced levels of heparanase in myeloma cells led to a dramatic increase in phosphorylation of PTEN, an event known to stabilize PTEN, leading to its inactivity and loss of tumor suppressor function. Collectively, this study demonstrates that heparanase promotes chromatin opening and transcriptional activity, some of which likely is through its impact on diminishing PTEN tumor suppressor activity.
Collapse
|
9
|
Simeonovic CJ, Popp SK, Brown DJ, Li FJ, Lafferty ARA, Freeman C, Parish CR. Heparanase and Type 1 Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:607-630. [PMID: 32274728 DOI: 10.1007/978-3-030-34521-1_24] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing beta cells in pancreatic islets. The degradation of the glycosaminoglycan heparan sulfate (HS) by the endo-β-D-glycosidase heparanase plays a critical role in multiple stages of the disease process. Heparanase aids (i) migration of inflammatory leukocytes from the vasculature to the islets, (ii) intra-islet invasion by insulitis leukocytes, and (iii) selective destruction of beta cells. These disease stages are marked by the solubilization of HS in the subendothelial basement membrane (BM), HS breakdown in the peri-islet BM, and the degradation of HS inside beta cells, respectively. Significantly, healthy islet beta cells are enriched in highly sulfated HS which is essential for their viability, protection from damage by reactive oxygen species (ROS), beta cell function and differentiation. Consequently, mouse and human beta cells but not glucagon-producing alpha cells (which contain less-sulfated HS) are exquisitely vulnerable to heparanase-mediated damage. In vitro, the death of HS-depleted mouse and human beta cells can be prevented by HS replacement using highly sulfated HS mimetics or analogues. T1D progression in NOD mice and recent-onset T1D in humans correlate with increased expression of heparanase by circulating leukocytes of myeloid origin and heparanase-expressing insulitis leukocytes. Treatment of NOD mice with the heparanase inhibitor and HS replacer, PI-88, significantly reduced T1D incidence by 50%, impaired the development of insulitis and preserved beta cell HS. These outcomes identified heparanase as a novel destructive tool in T1D, distinct from the conventional cytotoxic and apoptosis-inducing mechanisms of autoreactive T cells. In contrast to exogenous catalytically active heparanase, endogenous heparanase may function in HS homeostasis, gene expression and insulin secretion in normal beta cells and immune gene expression in leukocytes. In established diabetes, the interplay between hyperglycemia, local inflammatory cells (e.g. macrophages) and heparanase contributes to secondary micro- and macro-vascular disease. We have identified dual activity heparanase inhibitors/HS replacers as a novel class of therapeutic for preventing T1D progression and potentially for mitigating secondary vascular disease that develops with long-term T1D.
Collapse
Affiliation(s)
- Charmaine J Simeonovic
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| | - Sarah K Popp
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Debra J Brown
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Fei-Ju Li
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Antony R A Lafferty
- Department of Paediatrics, The Canberra Hospital, Woden, ACT, Australia.,The ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Craig Freeman
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
10
|
Vlodavsky I, Sanderson RD, Ilan N. Forty Years of Basic and Translational Heparanase Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:3-59. [PMID: 32274705 PMCID: PMC7142273 DOI: 10.1007/978-3-030-34521-1_1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes key developments in the heparanase field obtained 20 years prior to cloning of the HPSE gene and nearly 20 years after its cloning. Of the numerous publications and review articles focusing on heparanase, we have selected those that best reflect the progression in the field as well as those we regard important accomplishments with preference to studies performed by scientists and groups that contributed to this book. Apart from a general 'introduction' and 'concluding remarks', the abstracts of these studies are presented essentially as published along the years. We apologize for not being objective and not being able to include some of the most relevant abstracts and references, due to space limitation. Heparanase research can be divided into two eras. The first, initiated around 1975, dealt with identifying the enzyme, establishing the relevant assay systems and investigating its biological activities and significance in cancer and other pathologies. Studies performed during the first area are briefly introduced in a layman style followed by the relevant abstracts presented chronologically, essentially as appears in PubMed. The second era started in 1999 when the heparanase gene was independently cloned by 4 research groups [1-4]. As expected, cloning of the heparanase gene boosted heparanase research by virtue of the readily available recombinant enzyme, molecular probes, and anti-heparanase antibodies. Studies performed during the second area are briefly introduced followed by selected abstracts of key findings, arranged according to specific topics.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC) Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Haifa Israel
| |
Collapse
|
11
|
Christensen G, Herum KM, Lunde IG. Sweet, yet underappreciated: Proteoglycans and extracellular matrix remodeling in heart disease. Matrix Biol 2019; 75-76:286-299. [DOI: 10.1016/j.matbio.2018.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/22/2017] [Accepted: 01/01/2018] [Indexed: 12/20/2022]
|
12
|
Bollini S, Smits AM, Balbi C, Lazzarini E, Ameri P. Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication. Front Physiol 2018; 9:1497. [PMID: 30405446 PMCID: PMC6206049 DOI: 10.3389/fphys.2018.01497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
A variety of paracrine signals create networks within the myocardium and mediate intercellular communications. Indeed, paracrine stimulation of the endogenous regenerative program of the heart, mainly based on resident cardiac progenitor cell (CPC) activation together with cardiomyocyte proliferation, has become increasingly relevant for future cardiac medicine. In the last years, it has been shown that extracellular vesicles (EV), including exosomes (Ex), are powerful conveyors of relevant biological effects. EV have been proposed not only as promising therapeutic tool for triggering cardiac regeneration and improving repair, but also as means of better understanding the physiological and pathological relationships between specific cardiac components, including cardiomyocytes and fibroblasts. Actually, EV from different kinds of exogenous stem cells have been shown to mediate beneficial effects on the injured myocardium. Moreover, endogenous cells, like CPC can instruct cardiovascular cell types, including cardiomyocytes, while cardiac stromal cells, especially fibroblasts, secrete EV that modulate relevant aspects of cardiomyocyte biology, such as hypertrophy and electrophysiological properties. Finally, cardiomyocytes too may release EV influencing the function of other cardiac cell types. Therefore, EV-based crosstalk is thought to be important in both physiology and pathology, being involved in the responses of the heart to noxious stimuli. In this review we will discuss the role of EV in both regulating cardiac homeostasis and driving heart regeneration. In particular, we will address their role in: (i) providing cardio-protection and enhancing cardiac repair mechanisms; (ii) CPC biology; and (iii) influencing adult cardiomyocyte behavior.
Collapse
Affiliation(s)
- Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Anke M Smits
- Laboratory of Cardiovascular Cell Biology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Carolina Balbi
- Laboratory of Molecular and Cellular Cardiology, CardioCentro Ticino, Lugano, Switzerland
| | - Edoardo Lazzarini
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genoa, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genoa, Italy.,Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
13
|
He PP, Jiang T, OuYang XP, Liang YQ, Zou JQ, Wang Y, Shen QQ, Liao L, Zheng XL. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin Chim Acta 2018; 480:126-137. [PMID: 29453968 DOI: 10.1016/j.cca.2018.02.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/20/2023]
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme that catalyzes hydrolysis of the triglyceride (TG) core of circulating TG-rich lipoproteins including chylomicrons (CM), low-density lipoproteins (LDL) and very low-density lipoproteins (VLDL). A variety of parenchymal cells can synthesize and secrete LPL. Recent studies have demonstrated that complicated processes are involved in LPL biosynthesis, secretion and transport. The enzyme activity of LPL is regulated by many factors, such as apolipoproteins, angiopoietins, hormones and miRNAs. In this article, we also reviewed the roles of LPL in atherosclerosis, coronary heart disease, cerebrovascular accident, Alzheimer disease and chronic lymphocytic leukemia. LPL in different tissues exerts differential physiological functions. The role of LPL in atherosclerosis is still controversial as reported in the literature. Here, we focused on the properties of LPL derived from macrophages, endothelial cells and smooth muscle cells in the vascular wall. We also explore the existence of crosstalk between LPL and those cells when the molecule mainly plays a proatherogenic role. This review will provide insightful knowledge of LPL and open new therapeutic perspectives.
Collapse
Affiliation(s)
- Ping-Ping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Nursing School, University of South China, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ting Jiang
- Department of Practice Educational, Office of Academic Affairs, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xin-Ping OuYang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, 28 West Changsheng Road, Hengyang 421001, Hunan, China; Department of Physiology, The Neuroscience Institute, Medical College, University of South China, Hengyang, Hunan 421001, China; Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada
| | - Ya-Qin Liang
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Jie-Qiong Zou
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Yan Wang
- Nursing School, University of South China, Hengyang 421001, Hunan, China; The Affiliated First Hospital, Hengyang 421001, Hunan, China
| | - Qian-Qian Shen
- Nursing School, University of South China, Hengyang 421001, Hunan, China
| | - Li Liao
- Nursing School, University of South China, Hengyang 421001, Hunan, China.
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr. NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
14
|
Chiu APL, Bierende D, Lal N, Wang F, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Dual effects of hyperglycemia on endothelial cells and cardiomyocytes to enhance coronary LPL activity. Am J Physiol Heart Circ Physiol 2018; 314:H82-H94. [DOI: 10.1152/ajpheart.00372.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the diabetic heart, there is excessive dependence on fatty acid (FA) utilization to generate ATP. Lipoprotein lipase (LPL)-mediated hydrolysis of circulating triglycerides is suggested to be the predominant source of FA for cardiac utilization during diabetes. In the heart, the majority of LPL is synthesized in cardiomyocytes and secreted onto cell surface heparan sulfate proteoglycan (HSPG), where an endothelial cell (EC)-releasable β-endoglycosidase, heparanase cleaves the side chains of HSPG to liberate LPL for its onward movement across the EC. EC glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) captures this released enzyme at its basolateral side and shuttles it across to its luminal side. We tested whether the diabetes-induced increase of transforming growth factor-β (TGF-β) can influence the myocyte and EC to help transfer LPL to the vascular lumen to generate triglyceride-FA. In response to high glucose and EC heparanase secretion, this endoglycosidase is taken up by the cardiomyocyte (Wang Y, Chiu AP, Neumaier K, Wang F, Zhang D, Hussein B, Lal N, Wan A, Liu G, Vlodavsky I, Rodrigues B. Diabetes 63: 2643–2655, 2014) to stimulate matrix metalloproteinase-9 expression and the conversion of latent to active TGF-β. In the cardiomyocyte, TGF-β activation of RhoA enhances actin cytoskeleton rearrangement to promote LPL trafficking and secretion onto cell surface HSPG. In the EC, TGF-β signaling promotes mesodermal homeobox 2 translocation to the nucleus, which increases the expression of GPIHBP1, which facilitates movement of LPL to the vascular lumen. Collectively, our data suggest that in the diabetic heart, TGF-β actions on the cardiomyocyte promotes movement of LPL, whereas its action on the EC facilitates LPL shuttling. NEW & NOTEWORTHY Endothelial cells, as first responders to hyperglycemia, release heparanase, whose subsequent uptake by cardiomyocytes amplifies matrix metalloproteinase-9 expression and activation of transforming growth factor-β. Transforming growth factor-β increases lipoprotein lipase secretion from cardiomyocytes and promotes mesodermal homeobox 2 to enhance glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-dependent transfer of lipoprotein lipase across endothelial cells, mechanisms that accelerate fatty acid utilization by the diabetic heart.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Denise Bierende
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Wang F, Jia J, Lal N, Zhang D, Chiu APL, Wan A, Vlodavsky I, Hussein B, Rodrigues B. High glucose facilitated endothelial heparanase transfer to the cardiomyocyte modifies its cell death signature. Cardiovasc Res 2017; 112:656-668. [PMID: 27979811 DOI: 10.1093/cvr/cvw211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/21/2016] [Accepted: 09/16/2016] [Indexed: 01/26/2023] Open
Abstract
AIMS The secretion of enzymatically active heparanase (HepA) has been implicated as an essential metabolic adaptation in the heart following diabetes. However, the regulation and function of the enzymatically inactive heparanase (HepL) remain poorly understood. We hypothesized that in response to high glucose (HG) and secretion of HepL from the endothelial cell (EC), HepL uptake and function can protect the cardiomyocyte by modifying its cell death signature. METHODS AND RESULTS HG promoted both HepL and HepA secretion from microvascular (rat heart micro vessel endothelial cells, RHMEC) and macrovascular (rat aortic endothelial cells, RAOEC) EC. However, only RAOEC were capable of HepL reuptake. This occurred through a low-density lipoprotein receptor-related protein 1 (LRP1) dependent mechanism, as LRP1 inhibition using small interfering RNA (siRNA), receptor-associated protein, or an LRP1 neutralizing antibody significantly reduced uptake. In cardiomyocytes, which have a negligible amount of heparanase gene expression, LRP1 also participated in the uptake of HepL. Exogenous addition of HepL to rat cardiomyocytes produced a dramatically altered expression of apoptosis-related genes, and protection against HG and H2O2 induced cell death. Cardiomyocytes from acutely diabetic rats demonstrated a robust increase in LRP1 expression and levels of heparanase, a pro-survival gene signature, and limited evidence of cell death, observations that were not apparent following chronic and progressive diabetes. CONCLUSION Our results highlight EC-to-cardiomyocyte transfer of heparanase to modulate the cardiomyocyte cell death signature. This mechanism was observed in the acutely diabetic heart, and its interruption following chronic diabetes may contribute towards the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Dahai Zhang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
16
|
Lal N, Chiu APL, Wang F, Zhang D, Jia J, Wan A, Vlodavsky I, Hussein B, Rodrigues B. Loss of VEGFB and its signaling in the diabetic heart is associated with increased cell death signaling. Am J Physiol Heart Circ Physiol 2017; 312:H1163-H1175. [DOI: 10.1152/ajpheart.00659.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/08/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022]
Abstract
Vascular endothelial growth factor B (VEGFB) is highly expressed in metabolically active tissues, such as the heart and skeletal muscle, suggesting a function in maintaining oxidative metabolic and contractile function in these tissues. Multiple models of heart failure have indicated a significant drop in VEGFB. However, whether there is a role for decreased VEGFB in diabetic cardiomyopathy is currently unknown. Of the VEGFB located in cardiomyocytes, there is a substantial and readily releasable pool localized on the cell surface. The immediate response to high glucose and the secretion of endothelial heparanase is the release of this surface-bound VEGFB, which triggers signaling pathways and gene expression to influence endothelial cell (autocrine action) and cardiomyocyte (paracrine effects) survival. Under conditions of hyperglycemia, when VEGFB production is impaired, a robust increase in vascular endothelial growth factor receptor (VEGFR)-1 expression ensues as a possible mechanism to enhance or maintain VEGFB signaling. However, even with an increase in VEGFR1 after diabetes, cardiomyocytes are unable to respond to VEGFB. In addition to the loss of VEGFB production and signaling, evaluation of latent heparanase, the protein responsible for VEGFB release, also showed a significant decline in expression in whole hearts from animals with chronic or acute diabetes. Defects in these numerous VEGFB pathways were associated with an increased cell death signature in our models of diabetes. Through this bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes (which release VEGFB), this growth factor could provide the diabetic heart protection against cell death and may be a critical tool to delay or prevent cardiomyopathy. NEW & NOTEWORTHY We discovered a bidirectional interaction between endothelial cells (which secrete heparanase) and cardiomyocytes [which release vascular endothelial growth factor B (VEGFB)]. VEGFB promoted cell survival through ERK and cell death gene expression. Loss of VEGFB and its downstream signaling is an early event following hyperglycemia, is sustained with disease progression, and could explain diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Nathaniel Lal
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Amy Pei-Ling Chiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Fulong Wang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Dahai Zhang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Jocelyn Jia
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Israel Vlodavsky
- Rappaport Faculty of Medicine, Cancer and Vascular Biology Research Center, Technion, Haifa, Israel
| | - Bahira Hussein
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada; and
| |
Collapse
|
17
|
Evans RD, Hauton D. The role of triacylglycerol in cardiac energy provision. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1481-91. [DOI: 10.1016/j.bbalip.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023]
|
18
|
Wan A, Rodrigues B. Endothelial cell-cardiomyocyte crosstalk in diabetic cardiomyopathy. Cardiovasc Res 2016; 111:172-83. [PMID: 27288009 DOI: 10.1093/cvr/cvw159] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/21/2016] [Indexed: 12/19/2022] Open
Abstract
The incidence of diabetes is increasing globally, with cardiovascular disease accounting for a substantial number of diabetes-related deaths. Although atherosclerotic vascular disease is a primary reason for this cardiovascular dysfunction, heart failure in patients with diabetes might also be an outcome of an intrinsic heart muscle malfunction, labelled diabetic cardiomyopathy. Changes in cardiomyocyte metabolism, which encompasses a shift to exclusive fatty acid utilization, are considered a leading stimulus for this cardiomyopathy. In addition to cardiomyocytes, endothelial cells (ECs) make up a significant proportion of the heart, with the majority of ATP generation in these cells provided by glucose. In this review, we will discuss the metabolic machinery that drives energy metabolism in the cardiomyocyte and EC, its breakdown following diabetes, and the research direction necessary to assist in devising novel therapeutic strategies to prevent or delay diabetic heart disease.
Collapse
Affiliation(s)
- Andrea Wan
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
19
|
Chiu APL, Wan A, Rodrigues B. Cardiomyocyte-endothelial cell control of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1434-41. [PMID: 26995461 DOI: 10.1016/j.bbalip.2016.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/17/2023]
Abstract
In people with diabetes, inadequate pharmaceutical management predisposes the patient to heart failure, which is the leading cause of diabetes related death. One instigator for this cardiac dysfunction is change in fuel utilization by the heart. Thus, following diabetes, when cardiac glucose utilization is impaired, the heart undergoes metabolic transformation wherein it switches to using fats as an exclusive source of energy. Although this switching is geared to help the heart initially, in the long term, this has detrimental effects on cardiac function. These include the generation of noxious byproducts, which damage the cardiomyocytes, and ultimately result in increased morbidity and mortality. A key perpetrator that may be responsible for organizing this metabolic disequilibrium is lipoprotein lipase (LPL), the enzyme responsible for providing fat to the hearts. Either exaggeration or reduction in its activity following diabetes could lead to heart dysfunction. Given the disturbing news that diabetes is rampant across the globe, gaining more insight into the mechanism(s) by which cardiac LPL is regulated may assist other researchers in devising new therapeutic strategies to restore metabolic equilibrium, to help prevent or delay heart disease seen during diabetes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Amy Pei-Ling Chiu
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Andrea Wan
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Brian Rodrigues
- Pharmaceutical Sciences, The University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
20
|
Puthanveetil P, Wan A, Rodrigues B. Lipoprotein lipase and angiopoietin-like 4 – Cardiomyocyte secretory proteins that regulate metabolism during diabetic heart disease. Crit Rev Clin Lab Sci 2015; 52:138-49. [DOI: 10.3109/10408363.2014.997931] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Intrinsic and extrinsic regulation of cardiac lipoprotein lipase following diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:163-71. [PMID: 25463481 DOI: 10.1016/j.bbalip.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023]
Abstract
Cardiac lipoprotein lipase (LPL) is a pivotal enzyme controlling heart metabolism by providing the majority of fatty acids required by this organ. From activation in cardiomyocytes to secretion to the vascular lumen, cardiac LPL is regulated by multiple pathways, which are altered during diabetes. Hence, dimerization/activation of LPL is modified following diabetes, a process controlled by lipase maturation factor 1. The role of AMP-activated protein kinase, protein kinase D, and heparan sulfate proteoglycans, intrinsic factors that regulate the intracellular transport of LPL is also shifted, and is discussed. More recent studies have identified several exogenous factors released from endothelial cells (EC) and adipose tissue that are required for proper functioning of LPL. In response to hyperglycemia, both active and latent heparanase are released from EC to facilitate LPL secretion. Diabetes also increased the expression of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in EC, which mediates the transport of LPL across EC. Angiopoietin-like protein 4 secreted from the adipose tissue has the potential to reduce coronary LPL activity. Knowledge of these intrinsic and extrinsic factors could be used develop therapeutic targets to normalize LPL function, and maintain cardiac energy homeostasis after diabetes.
Collapse
|
22
|
Affiliation(s)
- Subrata Chakrabarti
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|