1
|
Moore WT, Luo J, Liu D. Kaempferol improves glucose uptake in skeletal muscle via an AMPK-dependent mechanism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
2
|
Ferrari F, Bock PM, Motta MT, Helal L. Biochemical and Molecular Mechanisms of Glucose Uptake Stimulated by Physical Exercise in Insulin Resistance State: Role of Inflammation. Arq Bras Cardiol 2020; 113:1139-1148. [PMID: 31644699 PMCID: PMC7021273 DOI: 10.5935/abc.20190224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity associated with systemic inflammation induces insulin resistance (IR), with consequent chronic hyperglycemia. A series of reactions are involved in this process, including increased release of proinflammatory cytokines, and activation of c-Jun N-terminal kinase (JNK), nuclear factor-kappa B (NF-κB) and toll-like receptor 4 (TLR4) receptors. Among the therapeutic tools available nowadays, physical exercise (PE) has a known hypoglycemic effect explained by complex molecular mechanisms, including an increase in insulin receptor phosphorylation, in AMP-activated protein kinase (AMPK) activity, in the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) pathway, with subsequent activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), Rac1, TBC1 domain family member 1 and 4 (TBC1D1 and TBC1D4), in addition to a variety of signaling molecules, such as GTPases, Rab and soluble N-ethylmaleimide-sensitive factor attached protein receptor (SNARE) proteins. These pathways promote greater translocation of GLUT4 and consequent glucose uptake by the skeletal muscle. Phosphoinositide-dependent kinase (PDK), atypical protein kinase C (aPKC) and some of its isoforms, such as PKC-iota/lambda also seem to play a fundamental role in the transport of glucose. In this sense, the association between autophagy and exercise has also demonstrated a relevant role in the uptake of muscle glucose. Insulin, in turn, uses a phosphoinositide 3-kinase (PI3K)-dependent mechanism, while exercise signal may be triggered by the release of calcium from the sarcoplasmic reticulum. The objective of this review is to describe the main molecular mechanisms of IR and the relationship between PE and glucose uptake.
Collapse
Affiliation(s)
- Filipe Ferrari
- Programa de Pós-graduação em Cardiologia e Ciências Cardiovasculares - Faculdade de Medicina - Hospital de Clínicas de Porto Alegre (HCPA) - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brazil.,Grupo de Pesquisa em Cardiologia do Exercício - CardioEx (HCPA/UFRGS), Porto Alegre, RS - Brazil
| | - Patrícia Martins Bock
- Laboratório de Fisiopatologia do Exercício (LaFiEx), (HCPA/UFRGS), Porto Alegre, RS - Brazil.,Instituto de Avaliação de Tecnologias em Saúde (IATS), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brazil.,Faculdades Integradas de Taquara, Taquara, RS - Brazil
| | - Marcelo Trotte Motta
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana (UEFS), Feira de Santana, BA - Brazil
| | - Lucas Helal
- Programa de Pós-graduação em Cardiologia e Ciências Cardiovasculares - Faculdade de Medicina - Hospital de Clínicas de Porto Alegre (HCPA) - Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brazil.,Laboratório de Fisiopatologia do Exercício (LaFiEx), (HCPA/UFRGS), Porto Alegre, RS - Brazil
| |
Collapse
|
3
|
Valsdottir TD, Henriksen C, Odden N, Nellemann B, Jeppesen PB, Hisdal J, Westerberg AC, Jensen J. Effect of a Low-Carbohydrate High-Fat Diet and a Single Bout of Exercise on Glucose Tolerance, Lipid Profile and Endothelial Function in Normal Weight Young Healthy Females. Front Physiol 2019; 10:1499. [PMID: 31920704 PMCID: PMC6931312 DOI: 10.3389/fphys.2019.01499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Low-carbohydrate-high-fat (LCHF) diets are efficient for weight loss, and are also used by healthy people to maintain bodyweight. The main aim of this study was to investigate the effect of 3-week energy-balanced LCHF-diet, with >75 percentage energy (E%) from fat, on glucose tolerance and lipid profile in normal weight, young, healthy women. The second aim of the study was to investigate if a bout of exercise would prevent any negative effect of LCHF-diet on glucose tolerance. Seventeen females participated, age 23.5 ± 0.5 years; body mass index 21.0 ± 0.4 kg/m2, with a mean dietary intake of 78 ± 1 E% fat, 19 ± 1 E% protein and 3 ± 0 E% carbohydrates. Measurements were performed at baseline and post-intervention. Fasting glucose decreased from 4.7 ± 0.1 to 4.4 mmol/L (p < 0.001) during the dietary intervention whereas fasting insulin was unaffected. Glucose area under the curve (AUC) and insulin AUC did not change during an OGTT after the intervention. Before the intervention, a bout of aerobic exercise reduced fasting glucose (4.4 ± 0.1 mmol/L, p < 0.001) and glucose AUC (739 ± 41 to 661 ± 25, p = 0.008) during OGTT the following morning. After the intervention, exercise did not reduce fasting glucose the following morning, and glucose AUC during an OGTT increased compared to the day before (789 ± 43 to 889 ± 40 mmol/L∙120min–1, p = 0.001). AUC for insulin was unaffected. The dietary intervention increased total cholesterol (p < 0.001), low-density lipoprotein (p ≤ 0.001), high-density lipoprotein (p = 0.011), triglycerides (p = 0.035), and free fatty acids (p = 0.021). In conclusion, 3-week LCHF-diet reduced fasting glucose, while glucose tolerance was unaffected. A bout of exercise post-intervention did not decrease AUC glucose as it did at baseline. Total cholesterol increased, mainly due to increments in low-density lipoprotein. LCHF-diets should be further evaluated and carefully considered for healthy individuals.
Collapse
Affiliation(s)
- Thorhildur Ditta Valsdottir
- Department of Medicine, Atlantis Medical University College, Oslo, Norway.,Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christine Henriksen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nancy Odden
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway
| | - Birgitte Nellemann
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Per B Jeppesen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jonny Hisdal
- Oslo Vascular Center, Department of Vascular Surgery, Oslo University Hospital, Oslo, Norway
| | - Ane C Westerberg
- Department of Nutrition, Atlantis Medical University College, Oslo, Norway.,Institute of Health Sciences, Kristiania University College, Oslo, Norway
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
4
|
Park S, Turner KD, Zheng D, Brault JJ, Zou K, Chaves AB, Nielsen TS, Tanner CJ, Treebak JT, Houmard JA. Electrical pulse stimulation induces differential responses in insulin action in myotubes from severely obese individuals. J Physiol 2018; 597:449-466. [PMID: 30414190 DOI: 10.1113/jp276990] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/07/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Exercise/exercise training can enhance insulin sensitivity through adaptations in skeletal muscle, the primary site of insulin-mediated glucose disposal; however, in humans the range of improvement can vary substantially. The purpose of this study was to determine if obesity influences the magnitude of the exercise response in relation to improving insulin sensitivity in human skeletal muscle. Electrical pulse stimulation (EPS; 24 h) of primary human skeletal muscle myotubes improved insulin action in tissue from both lean and severely obese individuals, but responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects. ABSTRACT Exercise/muscle contraction can enhance whole-body insulin sensitivity; however, in humans the range of improvements can vary substantially. In order, to determine if obesity influences the magnitude of the exercise response, this study compared the effects of electrical pulse stimulation (EPS)-induced contractile activity upon primary myotubes derived from lean and severely obese (BMI ≥ 40 kg/m2 ) women. Prior to muscle contraction, insulin action was compromised in myotubes from the severely obese as was evident from reduced insulin-stimulated glycogen synthesis, glucose oxidation, glucose uptake, insulin signal transduction (IRS1, Akt, TBC1D4), and insulin-stimulated GLUT4 translocation. EPS (24 h) increased AMP, IMP, AMPK Thr172 phosphorylation, PGC1α content, and insulin action in myotubes of both the lean and severely obese subjects. However, despite normalizing indices of insulin action to levels seen in the lean control (non-EPS) condition, responses to EPS were blunted with obesity. EPS improved insulin signal transduction in myotubes from lean but not severely obese subjects and EPS increased AMP accumulation and AMPK Thr172 phosphorylation, but to a lesser degree in myotubes from the severely obese. These data reveal that myotubes of severely obese individuals enhance insulin action and stimulate exercise-responsive molecules with contraction, but in a manner and magnitude that differs from lean subjects.
Collapse
Affiliation(s)
- Sanghee Park
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Kristen D Turner
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Donghai Zheng
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Jeffrey J Brault
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Kai Zou
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.,Department of Exercise and Health Sciences, University of Massachusetts Boston, Boston, MA, USA
| | - Alec B Chaves
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Thomas S Nielsen
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charles J Tanner
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph A Houmard
- Human Performance Laboratory, Ward Sports Medicine Building, East Carolina University, Greenville, NC, USA.,Department of Kinesiology, East Carolina University, Greenville, NC, USA.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| |
Collapse
|
5
|
Voluntary exercise opposes insulin resistance of skeletal muscle glucose transport during liquid fructose ingestion in rats. J Physiol Biochem 2018; 74:455-466. [PMID: 29882093 DOI: 10.1007/s13105-018-0639-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
We have recently reported that male rats given liquid fructose ingestion exhibit features of cardiometabolic abnormalities including non-obese insulin resistance with impaired insulin signaling transduction in skeletal muscle (Rattanavichit Y et al. Am J Physiol Regul Integr Comp Physiol 311: R1200-R1212, 2016). While exercise can attenuate obesity-related risks of cardiometabolic syndrome, the effectiveness and potential mechanism by which exercise modulates non-obese insulin resistance have not been fully studied. The present investigation evaluated whether regular exercise by voluntary wheel running (VWR) can reduce cardiometabolic risks induced by fructose ingestion. Moreover, the potential cellular adaptations following VWR on key signaling proteins known to influence insulin-induced glucose transport in skeletal muscle of fructose-ingested rats were investigated. Male Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) without or with access to running wheel for 6 weeks. We demonstrated that VWR restored insulin-stimulated glucose transport in the soleus muscle by improving the functionality of several signaling proteins, including insulin-stimulated IRβ Tyr1158/Tyr1162/Tyr1163 (82%), IRS-1 Tyr989 (112%), Akt Ser473 (56%), AS160 Thr642 (76%), and AS160 Ser588 (82%). These effects were accompanied by lower insulin-stimulated phosphorylation of IRS-1 Ser307 (37%) and JNK Thr183/Tyr185 (49%), without significant changes in expression of proteins in the renin-angiotensin system. Intriguingly, multiple cardiometabolic abnormalities were not observed in fructose-ingested rats with access to VWR. Collectively, this study demonstrates that the development of cardiometabolic abnormalities as well as insulin resistance of skeletal muscle and defective signaling molecules in rats induced by fructose ingestion could be opposed by VWR.
Collapse
|
6
|
White MA, Tsouko E, Lin C, Rajapakshe K, Spencer JM, Wilkenfeld SR, Vakili SS, Pulliam TL, Awad D, Nikolos F, Katreddy RR, Kaipparettu BA, Sreekumar A, Zhang X, Cheung E, Coarfa C, Frigo DE. GLUT12 promotes prostate cancer cell growth and is regulated by androgens and CaMKK2 signaling. Endocr Relat Cancer 2018; 25:453-469. [PMID: 29431615 PMCID: PMC5831527 DOI: 10.1530/erc-17-0051] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Despite altered metabolism being an accepted hallmark of cancer, it is still not completely understood which signaling pathways regulate these processes. Given the central role of androgen receptor (AR) signaling in prostate cancer, we hypothesized that AR could promote prostate cancer cell growth in part through increasing glucose uptake via the expression of distinct glucose transporters. Here, we determined that AR directly increased the expression of SLC2A12, the gene that encodes the glucose transporter GLUT12. In support of these findings, gene signatures of AR activity correlated with SLC2A12 expression in multiple clinical cohorts. Functionally, GLUT12 was required for maximal androgen-mediated glucose uptake and cell growth in LNCaP and VCaP cells. Knockdown of GLUT12 also decreased the growth of C4-2, 22Rv1 and AR-negative PC-3 cells. This latter observation corresponded with a significant reduction in glucose uptake, indicating that additional signaling mechanisms could augment GLUT12 function in an AR-independent manner. Interestingly, GLUT12 trafficking to the plasma membrane was modulated by calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-5'-AMP-activated protein kinase (AMPK) signaling, a pathway we previously demonstrated to be a downstream effector of AR. Inhibition of CaMKK2-AMPK signaling decreased GLUT12 translocation to the plasma membrane by inhibiting the phosphorylation of TBC1D4, a known regulator of glucose transport. Further, AR increased TBC1D4 expression. Correspondingly, expression of TBC1D4 correlated with AR activity in prostate cancer patient samples. Taken together, these data demonstrate that prostate cancer cells can increase the functional levels of GLUT12 through multiple mechanisms to promote glucose uptake and subsequent cell growth.
Collapse
Affiliation(s)
- Mark A. White
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Efrosini Tsouko
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey M. Spencer
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sandi R. Wilkenfeld
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Sheiva S. Vakili
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Thomas L. Pulliam
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Dominik Awad
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Fotis Nikolos
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Benny Abraham Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoliu Zhang
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Edwin Cheung
- Biology and Pharmacology, Genome Institute of Singapore, A*STAR, Singapore
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel E. Frigo
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
- Department of Cancer Systems Imaging, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
- Molecular Medicine Program, The Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
7
|
Tunduguru R, Thurmond DC. Promoting Glucose Transporter-4 Vesicle Trafficking along Cytoskeletal Tracks: PAK-Ing Them Out. Front Endocrinol (Lausanne) 2017; 8:329. [PMID: 29209279 PMCID: PMC5701999 DOI: 10.3389/fendo.2017.00329] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
Glucose is the principal cellular energy source in humans and maintenance of glucose homeostasis is critical for survival. Glucose uptake into peripheral skeletal muscle and adipose tissues requires the trafficking of vesicles containing glucose transporter-4 (GLUT4) from the intracellular storage compartments to the cell surface. Trafficking of GLUT4 storage vesicles is initiated via the canonical insulin signaling cascade in skeletal muscle and fat cells, as well as via exercise-induced contraction in muscle cells. Recent studies have elucidated steps in the signaling cascades that involve remodeling of the cytoskeleton, a process that underpins the mechanical movement of GLUT4 vesicles. This review is focused upon an alternate phosphoinositide-3 kinase-dependent pathway involving Ras-related C3 botulinum toxin substrate 1 signaling through the p21-activated kinase p21-activated kinase 1 and showcases related signaling events that co-regulate both the depolymerization and re-polymerization of filamentous actin. These new insights provide an enriched understanding into the process of glucose transport and yield potential new targets for interventions aimed to improve insulin sensitivity and remediate insulin resistance, pre-diabetes, and the progression to type 2 diabetes.
Collapse
Affiliation(s)
- Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute of City of Hope, Duarte, CA, United States
- *Correspondence: Debbie C. Thurmond,
| |
Collapse
|
8
|
Rattanavichit Y, Chukijrungroat N, Saengsirisuwan V. Sex differences in the metabolic dysfunction and insulin resistance of skeletal muscle glucose transport following high fructose ingestion. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1200-R1212. [PMID: 27834291 DOI: 10.1152/ajpregu.00230.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/20/2023]
Abstract
The role of high fructose ingestion (HFI) in the development of conditions mimicking human metabolic syndrome has mostly been demonstrated in male animals; however, the extent of HFI-induced metabolic alterations in females remains unclear. The present study investigated whether HFI-induced metabolic perturbations differ between sexes and whether HFI aggravates the metabolic disturbances under ovarian hormone deprivation. Male, female, and ovariectomized (OVX) Sprague-Dawley rats were given either water or liquid fructose (10% wt/vol) for 6 wk. Blood pressure, glucose tolerance, insulin-stimulated glucose transport activity and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, JNK, p38 MAPK, angiotensin-converting enzyme (ACE), ANG II type 1 receptor (AT1R), ACE2, and Mas receptor (MasR) in skeletal muscle, were evaluated. We found that HFI led to glucose intolerance and hypertension in male and OVX rats but not in female rats with intact ovaries. Moreover, HFI did not induce insulin resistance in the skeletal muscle of female and OVX rats but impaired the insulin-stimulated glucose transport activity in the skeletal muscle of male rats, which was accompanied by lower insulin-stimulated IRS-1 Tyr989 (44%), Akt Ser473 (30%), and AS160 Ser588 (43%), and increases in insulin-stimulated IRS-1 Ser307 (78%), JNK Thr183/Tyr185 (69%), and p38 MAPK Thr180/Tyr182 (81%). The results from the present study show sex differences in the development of metabolic syndrome-like conditions and indicate the protective role of female sex hormones against HFI-induced cardiometabolic abnormalities.
Collapse
Affiliation(s)
- Yupaporn Rattanavichit
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Natsasi Chukijrungroat
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vitoon Saengsirisuwan
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Abstract
Macroautophagy is a conserved degradative pathway in which a double-membrane compartment sequesters cytoplasmic cargo and delivers the contents to lysosomes for degradation. Efficient formation and maturation of autophagic vesicles, so-called phagophores that are precursors to autophagosomes, and their subsequent trafficking to lysosomes relies on the activity of small RAB GTPases, which are essential factors of cellular vesicle transport systems. The activity of RAB GTPases is coordinated by upstream factors, which include guanine nucleotide exchange factors (RAB GEFs) and RAB GTPase activating proteins (RAB GAPs). A role in macroautophagy regulation for different TRE2-BUB2-CDC16 (TBC) domain-containing RAB GAPs has been established. Recently, however, a positive modulation of macroautophagy has also been demonstrated for the TBC domain-free RAB3GAP1/2, adding to the family of RAB GAPs that coordinate macroautophagy and additional cellular trafficking pathways.
Collapse
Affiliation(s)
- Andreas Kern
- a Institute for Pathobiochemistry; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| | - Ivan Dikic
- b Buchmann Institute for Molecular Life Sciences; Goethe University Frankfurt ; Frankfurt am Main , Germany
| | - Christian Behl
- a Institute for Pathobiochemistry; University Medical Center of the Johannes Gutenberg University ; Mainz , Germany
| |
Collapse
|