1
|
Kato T, Matsuzawa F, Shojima N, Yamauchi T. Pathogenic variants in the fibronectin type III domain of leptin receptor: Molecular dynamics simulation and structural analysis. J Mol Graph Model 2025; 135:108912. [PMID: 39608136 DOI: 10.1016/j.jmgm.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
Several case reports have identified leptin receptor (LEPR) variants associated with severe obesity in humans. However, the structure of LEPR has only been partially understood until recently, and few studies have investigated the detrimental effects of these variants on the protein's three-dimensional structure. Notably, fibronectin type III (FnIII) domains play a crucial role in signal transduction. In this study, we examined the impact of 10 variants within the FnIII domains on LEPR structure using molecular dynamics (MD) simulations and structural analysis. Our 300 ns MD simulations revealed that the C604S variant, which disrupts a key disulfide bond, significantly increased the overall root-mean-square deviation (RMSD) of the FnIII-2 and FnIII-3 domains, indicating destabilization of the interdomain rigidity required for proper signaling. Variants such as P639L, N718S, and W646C also induced abnormal bending and rotational misalignment between the FnIII domains, contributing to interdomain destabilization. Structural analysis identified folding nuclei and demonstrated that L662S, W664R, H684P, and S723F destabilize the internal domain. Variants affecting interdomain resulted in lower-than-expected damage prediction scores by bioinformatics tools. This study is expected to contribute to the elucidation of the disease-causing mechanisms of missense variants in the leptin receptor.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumiko Matsuzawa
- Tokyo R&D Center, Altif Laboratories, Inc., 3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo, 105-0022, Japan
| | - Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
2
|
Kheriji N, Dallali H, Gouiza I, Hechmi M, Mahjoub F, Mrad M, Krir A, Soltani M, Trabelsi H, Hamdi W, Bahlous A, Ben Ahmed M, Jamoussi H, Kefi R. Whole-exome sequencing reveals novel variants of monogenic diabetes in Tunisia: impact on diagnosis and healthcare management. Front Genet 2023; 14:1224284. [PMID: 38162681 PMCID: PMC10757615 DOI: 10.3389/fgene.2023.1224284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/14/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Monogenic diabetes (MD) accounts for 3%-6% of all cases of diabetes. This prevalence is underestimated due to its overlapping clinical features with type 1 and type 2 diabetes. Hence, genetic testing is the most appropriate tool for obtaining an accurate diagnosis. In Tunisia, few cohorts of MD have been investigated until now. The aim of this study is to search for pathogenic variants among 11 patients suspected of having MD in Tunisia using whole-exome sequencing (WES). Materials and methods: WES was performed in 11 diabetic patients recruited from a collaborating medical center. The pathogenicity of genetic variation was assessed using combined filtering and bioinformatics prediction tools. The online ORVAL tool was used to predict the likelihood of combinations of pathogenic variations. Then, Sanger sequencing was carried out to confirm likely pathogenic predicted variants among patients and to check for familial segregation. Finally, for some variants, we performed structural modeling to study their impact on protein function. Results: We identified novel variants related to MD in Tunisia. Pathogenic variants are located in several MODY and non-MODY genes. We highlighted the presence of syndromic forms of diabetes, including the Bardet-Biedl syndrome, Alström syndrome, and severe insulin resistance, as well as the presence of isolated diabetes with significantly reduced penetrance for Wolfram syndrome-related features. Idiopathic type 1 diabetes was also identified in one patient. Conclusion: In this study, we emphasized the importance of genetic screening for MD in patients with a familial history of diabetes, mainly among admixed and under-represented populations living in low- and middle-income countries. An accurate diagnosis with molecular investigation of MD may improve the therapeutic choice for better management of patients and their families. Additional research and rigorous investigations are required to better understand the physiopathological mechanisms of MD and implement efficient therapies that take into account genomic context and other related factors.
Collapse
Affiliation(s)
- Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- MitoLab Team, Unité MitoVasc, UMR CNRS 6015, Institut national de la santé et de la recherche médicale U1083, SFR ICAT, University of Angers, Angers, France
| | - Meriem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Faten Mahjoub
- University of Tunis El Manar, Tunis, Tunisia
- Faculté de Médecine de Tunis, Research Unit UR18ES01 on “Obesity”, Tunis, Tunisia
- National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Mehdi Mrad
- University of Tunis El Manar, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Asma Krir
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Manel Soltani
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hajer Trabelsi
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Walid Hamdi
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Afef Bahlous
- University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Clinical Biochemistry and Hormonology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Melika Ben Ahmed
- University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Henda Jamoussi
- University of Tunis El Manar, Tunis, Tunisia
- Faculté de Médecine de Tunis, Research Unit UR18ES01 on “Obesity”, Tunis, Tunisia
- National Institute of Nutrition and Food Technology, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|