1
|
Lin E, Yan YT, Chen MH, Yang AC, Kuo PH, Tsai SJ. Gene clusters linked to insulin resistance identified in a genome-wide study of the Taiwan Biobank population. Nat Commun 2025; 16:3525. [PMID: 40229288 PMCID: PMC11997021 DOI: 10.1038/s41467-025-58506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
This pioneering genome-wide association study examined surrogate markers for insulin resistance (IR) in 147,880 Taiwanese individuals using data from the Taiwan Biobank. The study focused on two IR surrogate markers: the triglyceride to high-density lipoprotein cholesterol (TG:HDL-C) ratio and the TyG index (the product of fasting plasma glucose and triglycerides). We identified genome-wide significance loci within four gene clusters: GCKR, MLXIPL, APOA5, and APOC1, uncovering 197 genes associated with IR. Transcriptome-wide association analysis revealed significant associations between these clusters and TyG, primarily in adipose tissue. Gene ontology analysis highlighted pathways related to Alzheimer's disease, glucose homeostasis, insulin resistance, and lipoprotein dynamics. The study identified sex-specific genes associated with TyG. Polygenic risk score analysis linked both IR markers to gout and hyperlipidemia. Our findings elucidate the complex relationships between IR surrogate markers, genetic predisposition, and disease phenotypes in the Taiwanese population, contributing valuable insights to the field of metabolic research.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, ROC
| | - Yu-Ting Yan
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Albert C Yang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan, ROC.
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan, ROC.
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
- Department of Psychiatry, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| |
Collapse
|
2
|
Zhang W, Sladek R, Li Y, Najafabadi H, Dupuis J. Accounting for genetic effect heterogeneity in fine-mapping and improving power to detect gene-environment interactions with SharePro. Nat Commun 2024; 15:9374. [PMID: 39478020 PMCID: PMC11526169 DOI: 10.1038/s41467-024-53818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Classical gene-by-environment interaction (GxE) analysis can be used to characterize genetic effect heterogeneity but has a high multiple testing burden in the context of genome-wide association studies (GWAS). We adapt a colocalization method, SharePro, to account for effect heterogeneity in fine-mapping and identify candidates for GxE analysis with reduced multiple testing burden. SharePro demonstrates improved power for both fine-mapping and GxE analysis compared to existing methods as well as well-controlled false type I error in simulations. Using smoking status stratified GWAS summary statistics, we identify genetic effects on lung function modulated by smoking status that are not identified by existing methods. Additionally, using sex stratified GWAS summary statistics, we characterize sex differentiated genetic effects on fat distribution. In summary, we have developed an analytical framework to account for effect heterogeneity in fine-mapping and subsequently improve power for GxE analysis. The SharePro software for GxE analysis is openly available at https://github.com/zhwm/SharePro_gxe .
Collapse
Affiliation(s)
- Wenmin Zhang
- Quantitative Life Sciences Program, McGill University, Montréal, Canada.
- Montreal Heart Institute, Montréal, Canada.
| | - Robert Sladek
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, Canada
| | - Yue Li
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- School of Computer Science, McGill University, Montréal, Canada
| | - Hamed Najafabadi
- Quantitative Life Sciences Program, McGill University, Montréal, Canada
- Department of Human Genetics, McGill University, Montréal, Canada
- Dahdaleh Institute of Genomic Medicine, McGill University, Montréal, Canada
| | - Josée Dupuis
- Quantitative Life Sciences Program, McGill University, Montréal, Canada.
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Canada.
| |
Collapse
|
3
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JL, Civelek M. Systems genetics analysis of human body fat distribution genes identifies adipocyte processes. Life Sci Alliance 2024; 7:e202402603. [PMID: 38702075 PMCID: PMC11068934 DOI: 10.26508/lsa.202402603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.
Collapse
Affiliation(s)
- Jordan N Reed
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jiansheng Huang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Yong Li
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dhanush Banka
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Tianfang Wang
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Wen Ding
- Novo Nordisk Research Center China, Novo Nordisk A/S, Beijing, China
| | - Johan Lm Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Anunciado-Koza RVP, Yin H, Bilodeau CL, Cooke D, Ables GP, Ryzhov S, Koza RA. Interindividual differences of dietary fat-inducible Mest in white adipose tissue of C57BL/6J mice are not heritable. Obesity (Silver Spring) 2024; 32:1144-1155. [PMID: 38616328 PMCID: PMC11132930 DOI: 10.1002/oby.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE Differences in white adipose tissue (WAT) expression of mesoderm-specific transcript (Mest) in C57BL6/J mice fed a high-fat diet (HFD) are concomitant with and predictive for the development of obesity. However, the basis for differences in WAT Mest among mice is unknown. This study investigated whether HFD-inducible WAT Mest, as well as susceptibility to obesity, is transmissible from parents to offspring. METHODS WAT biopsies of mice fed an HFD for 2 weeks identified parents with low and high WAT Mest for breeding. Obesity phenotypes, WAT Mest, hepatic gene expression, and serum metabolites were determined in offspring fed an HFD for 2 weeks. RESULTS Offspring showed no heritability of obesity or WAT Mest phenotypes from parents but did show hepatic and serum metabolite changes consistent with their WAT Mest. Importantly, retired male breeders showed WAT Mest expression congruent with initial WAT biopsies even though HFD exposure occurred early in life. CONCLUSIONS Disparity of HFD-induced Mest in mice is not heritable but, rather, is reestablished during each generation and remains fixed from an early age to adulthood. Short-term HFD feeding reveals variation of WAT Mest expression within isogenic mice that is positively associated with the development of obesity.
Collapse
Affiliation(s)
| | - Haifeng Yin
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | | | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc., Cold Spring, New York, USA
| | - Gene P. Ables
- Orentreich Foundation for the Advancement of Science, Inc., Cold Spring, New York, USA
| | - Sergey Ryzhov
- MaineHealth Institute for Research, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Robert A. Koza
- MaineHealth Institute for Research, Scarborough, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
5
|
Mao X, Li Y, Zhong Y, Chen R, Wang K, Huang D, Luo X. Kruppel-like factor 14 ameliorated obesity and related metabolic disorders by promoting adipose tissue browning. Am J Physiol Endocrinol Metab 2023; 325:E744-E754. [PMID: 37938176 DOI: 10.1152/ajpendo.00226.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023]
Abstract
Obesity has been identified as a serious and debilitating disease that threatens human health, but the current treatment strategies still have some shortcomings. Exercise and dieting are difficult for many people to adhere to, and a series of surgical risks and pain brought about by volume reduction have made it difficult for the current weight loss effect to meet human expectations. In this study, we first found that mice with overexpression of the transcription factor Kruppel-like factor 14 (KLF14) in subcutaneous adipose tissue gained weight more slowly while consuming a high-fat diet than did control mice, and these mice also showed reduced insulin resistance and liver lipid deposition abnormalities. Mechanistically, the browning of white adipose tissue was promoted in adipose tissue with KLF14 overexpression; therefore, we preliminarily concluded that KLF14 can improve obesity by promoting the browning of white adipose tissue and energy consumption, thus ameliorating obesity and related metabolic disturbances. In summary, our results revealed that KLF14 may promote white adipose tissue browning, thus ameliorating high-fat diet-induced obesity and hepatic steatosis, as well as serum lipid levels and insulin resistance, thereby achieving a positive effect on metabolism.NEW & NOTEWORTHY Our study first explored the role of KLF14 in the development and progression of HFD-induced obesity in male mice. Its beneficial effect on adipose browning and metabolic disorders suggests that KLF14 may provide us a new therapeutic strategy for obesity and related metabolic complications. This health problem is of global concern and needs to be addressed.
Collapse
Affiliation(s)
- Xiaoxiang Mao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yuanxiang Li
- Department of Oncology, Hubei Cancer Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Zhong
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kun Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dandan Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xi Luo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Reed JN, Huang J, Li Y, Ma L, Banka D, Wabitsch M, Wang T, Ding W, Björkegren JLM, Civelek M. Systems genetics analysis of human body fat distribution genes identifies Wnt signaling and mitochondrial activity in adipocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556534. [PMID: 37732278 PMCID: PMC10508754 DOI: 10.1101/2023.09.06.556534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
BACKGROUND Excess fat in the abdomen is a sexually dimorphic risk factor for cardio-metabolic disease. The relative storage between abdominal and lower-body subcutaneous adipose tissue depots is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Genome-wide association studies (GWAS) identified 346 loci near 495 genes associated with WHRadjBMI. Most of these genes have unknown roles in fat distribution, but many are expressed and putatively act in adipose tissue. We aimed to identify novel sex- and depot-specific drivers of WHRadjBMI using a systems genetics approach. METHODS We used two independent cohorts of adipose tissue gene expression with 362 - 444 males and 147 - 219 females, primarily of European ancestry. We constructed sex- and depot- specific Bayesian networks to model the gene-gene interactions from 8,492 adipose tissue genes. Key driver analysis identified genes that, in silico and putatively in vitro, regulate many others, including the 495 WHRadjBMI GWAS genes. Key driver gene function was determined by perturbing their expression in human subcutaneous pre-adipocytes using lenti-virus or siRNA. RESULTS 51 - 119 key drivers in each network were replicated in both cohorts. We used single-cell expression data to select replicated key drivers expressed in adipocyte precursors and mature adipocytes, prioritized genes which have not been previously studied in adipose tissue, and used public human and mouse data to nominate 53 novel key driver genes (10 - 21 from each network) that may regulate fat distribution by altering adipocyte function. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We selected seven genes whose expression is highly correlated with WHRadjBMI to further study their effects on adipogenesis/Wnt signaling (ANAPC2, PSME3, RSPO1, TYRO3) or mitochondrial function (C1QTNF3, MIGA1, PSME3, UBR1).Adipogenesis was inhibited in cells overexpressing ANAPC2 and RSPO1 compared to controls. RSPO1 results are consistent with a positive correlation between gene expression in the subcutaneous depot and WHRadjBMI, therefore lower relative storage in the subcutaneous depot. RSPO1 inhibited adipogenesis by increasing β-catenin activation and Wnt-related transcription, thus repressing PPARG and CEBPA. PSME3 overexpression led to more adipogenesis than controls. In differentiated adipocytes, MIGA1 and UBR1 downregulation led to mitochondrial dysfunction, with lower oxygen consumption than controls; MIGA1 knockdown also lowered UCP1 expression. SUMMARY ANAPC2, MIGA1, PSME3, RSPO1, and UBR1 affect adipocyte function and may drive body fat distribution.
Collapse
|
7
|
Aberra YT, Ma L, Björkegren JLM, Civelek M. Predicting mechanisms of action at genetic loci associated with discordant effects on type 2 diabetes and abdominal fat accumulation. eLife 2023; 12:e79834. [PMID: 37326626 PMCID: PMC10275637 DOI: 10.7554/elife.79834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Obesity is a major risk factor for cardiovascular disease, stroke, and type 2 diabetes (T2D). Excessive accumulation of fat in the abdomen further increases T2D risk. Abdominal obesity is measured by calculating the ratio of waist-to-hip circumference adjusted for the body-mass index (WHRadjBMI), a trait with a significant genetic inheritance. Genetic loci associated with WHRadjBMI identified in genome-wide association studies are predicted to act through adipose tissues, but many of the exact molecular mechanisms underlying fat distribution and its consequences for T2D risk are poorly understood. Further, mechanisms that uncouple the genetic inheritance of abdominal obesity from T2D risk have not yet been described. Here we utilize multi-omic data to predict mechanisms of action at loci associated with discordant effects on abdominal obesity and T2D risk. We find six genetic signals in five loci associated with protection from T2D but also with increased abdominal obesity. We predict the tissues of action at these discordant loci and the likely effector Genes (eGenes) at three discordant loci, from which we predict significant involvement of adipose biology. We then evaluate the relationship between adipose gene expression of eGenes with adipogenesis, obesity, and diabetic physiological phenotypes. By integrating these analyses with prior literature, we propose models that resolve the discordant associations at two of the five loci. While experimental validation is required to validate predictions, these hypotheses provide potential mechanisms underlying T2D risk stratification within abdominal obesity.
Collapse
Affiliation(s)
- Yonathan Tamrat Aberra
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Johan LM Björkegren
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Medicine, Karolinska Institutet, HuddingeStockholmSweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of VirginiaCharlottesvilleUnited States
- Center for Public Health Genomics, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
8
|
Poojari A, Dev K, Rabiee A. Lipedema: Insights into Morphology, Pathophysiology, and Challenges. Biomedicines 2022; 10:biomedicines10123081. [PMID: 36551837 PMCID: PMC9775665 DOI: 10.3390/biomedicines10123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lipedema is an adipofascial disorder that almost exclusively affects women. Lipedema leads to chronic pain, swelling, and other discomforts due to the bilateral and asymmetrical expansion of subcutaneous adipose tissue. Although various distinctive morphological characteristics, such as the hyperproliferation of fat cells, fibrosis, and inflammation, have been characterized in the progression of lipedema, the mechanisms underlying these changes have not yet been fully investigated. In addition, it is challenging to reduce the excessive fat in lipedema patients using conventional weight-loss techniques, such as lifestyle (diet and exercise) changes, bariatric surgery, and pharmacological interventions. Therefore, lipedema patients also go through additional psychosocial distress in the absence of permanent treatment. Research to understand the pathology of lipedema is still in its infancy, but promising markers derived from exosome, cytokine, lipidomic, and metabolomic profiling studies suggest a condition distinct from obesity and lymphedema. Although genetics seems to be a substantial cause of lipedema, due to the small number of patients involved in such studies, the extrapolation of data at a broader scale is challenging. With the current lack of etiology-guided treatments for lipedema, the discovery of new promising biomarkers could provide potential solutions to combat this complex disease. This review aims to address the morphological phenotype of lipedema fat, as well as its unclear pathophysiology, with a primary emphasis on excessive interstitial fluid, extracellular matrix remodeling, and lymphatic and vasculature dysfunction. The potential mechanisms, genetic implications, and proposed biomarkers for lipedema are further discussed in detail. Finally, we mention the challenges related to lipedema and emphasize the prospects of technological interventions to benefit the lipedema community in the future.
Collapse
|
9
|
Sandovici I, Fernandez-Twinn DS, Hufnagel A, Constância M, Ozanne SE. Sex differences in the intergenerational inheritance of metabolic traits. Nat Metab 2022; 4:507-523. [PMID: 35637347 DOI: 10.1038/s42255-022-00570-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/05/2022] [Indexed: 02/02/2023]
Abstract
Strong evidence suggests that early-life exposures to suboptimal environmental factors, including those in utero, influence our long-term metabolic health. This has been termed developmental programming. Mounting evidence suggests that the growth and metabolism of male and female fetuses differ. Therefore, sexual dimorphism in response to pre-conception or early-life exposures could contribute to known sex differences in susceptibility to poor metabolic health in adulthood. However, until recently, many studies, especially those in animal models, focused on a single sex, or, often in the case of studies performed during intrauterine development, did not report the sex of the animal at all. In this review, we (a) summarize the evidence that male and females respond differently to a suboptimal pre-conceptional or in utero environment, (b) explore the potential biological mechanisms that underlie these differences and (c) review the consequences of these differences for long-term metabolic health, including that of subsequent generations.
Collapse
Affiliation(s)
- Ionel Sandovici
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Antonia Hufnagel
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Miguel Constância
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| |
Collapse
|