1
|
Fu S, Luo R, Li J, Fu Y, Dong Q, Liu S, Sun Y, Guo L, Hu J, Qiu Y. Baicalin Alleviates Piglet Immunosuppression Induced by Glaesserella parasuis via Promoting CD163/Tumor Necrosis Factor-like Weak Inducer of Apoptosis-Mediated Autophagy. Biomolecules 2025; 15:722. [PMID: 40427615 PMCID: PMC12108983 DOI: 10.3390/biom15050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Glaesserella parasuis (G. parasuis) causes vascular inflammation in piglets, resulting in vascular damage. However, the mechanism causing vascular inflammation remains unclear. Baicalin possesses an anti-inflammatory function. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been implicated in immunosuppression. CD163, a scavenger receptor expressed on macrophages that acts as a decoy receptor for TWEAK, plays a crucial role in the regulation of autophagy and inflammation. This research investigated the efficacy of baicalin in reducing immunosuppression elicited by G. parasuis through the regulation of CD163/TWEAK-mediated autophagy. The data demonstrated that G. parasuis altered routine blood indicators and biochemical parameters, increased cytokine production, and induced blood vessel tissue damage. G. parasuis reduced the CD3+ T cell proportion, CD3+CD4+ T cell proportion, and CD3+CD8+ T cell proportion in piglet blood. The proteomic analysis revealed that CD163 was differentially expressed in the blood vessels of challenged piglets. Baicalin was found to regulate CD163/TWEAK axis expression, inhibit Notch/Wnt signaling pathway activation, promote autophagy, and reduce NLRP3/Caspase 1 signaling pathway activation. Baicalin also decreased cytokine production and alleviated pathological tissue damage in the blood vessels of G. parasuis-challenged piglets. Taken together, this study indicates that baicalin alleviates G. parasuis-induced immunosuppression and might promote CD163/TWEAK-mediated autophagy. This finding suggests that baicalin could serve as a potential therapeutic agent to control G. parasuis infection and related vascular inflammation.
Collapse
Affiliation(s)
- Shulin Fu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ronghui Luo
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jingyang Li
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yunjian Fu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qiaoli Dong
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Siyu Liu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yamin Sun
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ling Guo
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jin Hu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yinsheng Qiu
- Wuhan Engineering and Technology Research Center of Animal Disease-Resistant Nutrition, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (R.L.); (J.L.); (Y.F.); (Q.D.); (S.L.); (Y.S.); (L.G.); (J.H.); (Y.Q.)
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Ahn C, Divoux A, Zhou M, Seldin MM, Sparks LM, Whytock KL. Optimized RNA sequencing deconvolution illustrates the impact of obesity and weight loss on cell composition of human adipose tissue. Obesity (Silver Spring) 2025; 33:936-948. [PMID: 40176378 PMCID: PMC12018139 DOI: 10.1002/oby.24264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE Cellular heterogeneity of human adipose tissue is linked to the pathophysiology of obesity and may impact the response to energy restriction and changes in fat mass. Herein, we provide an optimized pipeline to estimate cellular composition in human abdominal subcutaneous adipose tissue (ASAT) bulk RNA sequencing (RNA-seq) datasets using a single-nuclei RNA-seq signature matrix. METHODS A deconvolution pipeline for ASAT was optimized by benchmarking publicly available algorithms using a signature matrix derived from ASAT single-nuclei RNA-seq data from 20 adults and then applied to estimate ASAT cell-type proportions in publicly available obesity and weight loss studies. RESULTS Individuals with obesity had greater proportions of macrophages and lower proportions of adipocyte subpopulations and vascular cells compared with lean individuals. Two months of diet-induced weight loss increased the estimated proportions of macrophages; however, 2 years of diet-induced weight loss reduced the estimated proportions of macrophages, thereby suggesting a biphasic nature of cellular remodeling of ASAT during weight loss. CONCLUSIONS Our optimized high-throughput pipeline facilitates the assessment of composition changes of highly characterized cell types in large numbers of ASAT samples using low-cost bulk RNA-seq. Our data reveal novel changes in cellular heterogeneity and its association with cardiometabolic health in humans with obesity and following weight loss.
Collapse
Affiliation(s)
- Cheehoon Ahn
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Mingqi Zhou
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| | - Marcus M Seldin
- Department of Biological Chemistry and Center for Epigenetics and Metabolism, University of California, Irvine, California, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, Florida, USA
| |
Collapse
|