1
|
Ottaviani L, Juni RP, de Abreu RC, Sansonetti M, Sampaio-Pinto V, Halkein J, Hegenbarth JC, Ring N, Knoops K, Kocken JMM, Jesus C, Ernault AC, El Azzouzi H, Rühle F, Olieslagers S, Fernandes H, Ferreira L, Braga L, Stoll M, Nascimento DS, de Windt LJ, da Costa Martins PA. Intercellular transfer of miR-200c-3p impairs the angiogenic capacity of cardiac endothelial cells. Mol Ther 2022; 30:2257-2273. [PMID: 35278675 DOI: 10.1016/j.ymthe.2022.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
As mediators of intercellular communication, extracellular vesicles containing molecular cargo such as microRNAs, are secreted by cells and taken up by recipient cells to influence their cellular phenotype and function. Here, we report that cardiac stress-induced differential microRNA content, with miR-200c-3p being one of the most enriched, in cardiomyocyte-derived extracellular vesicles mediates functional crosstalk with endothelial cells. Silencing of miR-200c-3p in mice subjected to chronic increased cardiac pressure overload resulted in attenuated hypertrophy, smaller fibrotic areas, higher capillary density and preserved cardiac ejection fraction. Interestingly, we were able to maximal rescue microvascular and cardiac function with very low doses of antagomir, which specifically silences miR-200c-3p expression in the non-myocyte cells. Our results reveal vesicle transfer of miR-200c-3p from cardiomyocytes to cardiac endothelial cells, underlining the importance of cardiac intercellular communication in the pathophysiology of heart failure.
Collapse
Affiliation(s)
- L Ottaviani
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - R P Juni
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Science, Amsterdam, The Netherlands
| | - R C de Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands; CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal
| | - M Sansonetti
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - V Sampaio-Pinto
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands; i3S - Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomêdicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - J Halkein
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - J C Hegenbarth
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - N Ring
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - K Knoops
- Microscope CORE lab, The Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, The Netherlands
| | - J M M Kocken
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - C Jesus
- CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal; Faculty of Medicine University of Coimbra, Coimbra, Portugal
| | - A C Ernault
- Departments of Experimental Cardiology, Biostatistics and Bioinformatics, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - H El Azzouzi
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - F Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - S Olieslagers
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - H Fernandes
- CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal; Faculty of Medicine University of Coimbra, Coimbra, Portugal
| | - L Ferreira
- CNC - Center for Neuroscience and Cell Biology,CIBB - Centre for Innovative Biomedicine and Biotechnology, University Coimbra, Portugal; Faculty of Medicine University of Coimbra, Coimbra, Portugal
| | - L Braga
- Functional Cell Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - M Stoll
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy; Department of Biochemistry, Genetic Epidemiology and Statistical Genetics, CARIM School for Cardiovascular Diseases, Maastricht Center for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - D S Nascimento
- i3S - Instituto de Investigação e Inovação em Saude, Universidade do Porto, Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomêdicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - L J de Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands
| | - P A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Molecular Genetics, Faculty of Sciences and Engineering, Maastricht University, Maastricht, The Netherlands; Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Li H, Zou J, Yu XH, Ou X, Tang CK. Zinc finger E-box binding homeobox 1 and atherosclerosis: New insights and therapeutic potential. J Cell Physiol 2020; 236:4216-4230. [PMID: 33275290 DOI: 10.1002/jcp.30177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022]
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1), an important transcription factor belonging to the ZEB family, plays a crucial role in regulating gene expression required for both normal physiological and pathological processes. Accumulating evidence has shown that ZEB1 participates in the initiation and progression of atherosclerotic cardiovascular disease. Recent studies suggest that ZEB1 protects against atherosclerosis by regulation of endothelial cell angiogenesis, endothelial dysfunction, monocyte-endothelial cell interaction, macrophage lipid accumulation, macrophage polarization, monocyte-vascular smooth muscle cell (VSMC) interaction, VSMC proliferation and migration, and T cell proliferation. In this review, we summarize the recent progress of ZEB1 in the pathogenesis of atherosclerosis and provide insights into the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China.,Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Instrument and Equipment Technology Laboratory of Hengyang Medical College, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
3
|
Yuan Y, Li X, Li M. Overexpression of miR‑17‑5p protects against high glucose‑induced endothelial cell injury by targeting E2F1‑mediated suppression of autophagy and promotion of apoptosis. Int J Mol Med 2018; 42:1559-1568. [PMID: 29786752 DOI: 10.3892/ijmm.2018.3697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Abstract
E2 promoter binding factor 1 (E2F1) has been reported to have an important regulatory role in cell survival during hyperglycemic conditions; however, the mechanisms remain to be fully elucidated. Bioinformatics analyses have suggested that microRNA (miR)‑17‑5p targets the 3'untranslated region (3'UTR) of E2F1. The aim of the present study was to characterize the protective effect of miR‑17‑5p/E2F1 on human umbilical vein endothelial cells (HUVECs) under high glucose (HG) conditions, to confirm the regulatory effect of miR‑17‑5p on E2F1/AMP‑activated protein kinase α2 (AMPKα2)‑mediated apoptosis and E2F1/mammalian target of rapamycin complex 1 (mTORC1)‑mediated autophagy. Bifluorescein experiments were performed to characterize the interaction between miR‑17‑5p and E2F1. The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence, and reverse transcription‑quantitative polymerase chain reaction and western blot analyses were used to detect cell viability, apoptosis, autophagy, and relative mRNA and protein expression, respectively. The results showed that HG induced the downregulation of miR‑17‑5p and upregulation of E2F1 during HUVEC injury. The downregulation of E2F1 inhibited HG‑induced HUVEC dysfunction by suppressing mTORC1‑mediated inhibition of autophagy and AMPKα2‑mediated promotion of apoptosis. The results suggested that inhibiting the expression of E2F1 protected against HG‑induced HUVEC injury via the activation of autophagy. The overexpression of miR‑17‑5p inhibited E2F1‑mediated HUVEC injury under HG conditions, which was reversed following transfection with an E2F1‑overexpression vector. The bifluorescein experiments showed that miR‑17‑5p targeted the 3'UTR of E2F1. Taken together, the results suggested that the expression of miR‑17‑5p inhibited HG‑induced endothelial cell injury by targeting E2F1.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Xue Li
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Maoquan Li
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|