1
|
Achour Y, Ben Hamad M, Chaabane S, Rebai A, Marzouk S, Mahfoudh N, Bahloul Z, Keskes L, Maalej A. Analysis of two susceptibility SNPs in HLA region and evidence of interaction between rs6457617 in HLA-DQB1 and HLA-DRB1*04 locus on Tunisian rheumatoid arthritis. J Genet 2018; 96:911-918. [PMID: 29321349 DOI: 10.1007/s12041-017-0855-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previous genomewide association studies (GWAS) and meta-analyses have enumerated several genes/loci in major histocompatibility complex region, which are consistently associated with rheumatoid arthritis (RA) in different ethnic populations. Given the genetic heterogeneity of the disease, it is necessary to replicate these susceptibility loci in other populations. In this case, we investigate the analysis of two SNPs, rs13192471 and rs6457617, from the human leukocyte antigen (HLA) region with the risk of RA in Tunisian population. These SNPs were previously identified to have a strong RA association signal in several GWAS studies. A case-control sample composed of 142 RA patients and 123 healthy controls was analysed. Genotyping of rs13192471 and rs6457617 was carried out using real-time PCR methods by TaqMan allelic discrimination assay. A trend of significant association was found in rs6457617 TT genotype with susceptibility to RA (P = 0.04, pc = 0.08, OR = 1.73). Moreover, using multivariable analysis, the combination of rs6457617*TT-HLA-DRB1*04+ increased risk of RA (OR = 2.38), which suggest a gene-gene interaction event between rs6457617 located within the HLA-DQB1 and HLA-DRB1. Additionally, haplotypic analysis highlighted a significant association of rs6457617*T-HLA-DRB1*04+ haplotype with susceptibility to RA (P = 0.018, pc = 0.036, OR = 1.72). An evidence of association was shown subsequently in antiCCP+ subgroup with rs6457617 both in T allele and TT genotype (P = 0.01, pc = 0.03, OR = 1.66 and P = 0.008, pc = 0.024, OR = 1.28, respectively). However, no association was shown for rs13192471 polymorphism with susceptibility and severity to RA. This study suggests the involvement of rs6457617 locus as risk variant for susceptibility/severity to RA in Tunisian population. Secondly, it highlights the gene-gene interaction between HLA-DQB1 and HLA-DRB1.
Collapse
Affiliation(s)
- Yosser Achour
- Faculty of Medicine, Laboratory of Human Molecular Genetics, Avenue Majida Boulila. 3029, Sfax, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Jia X, Horinouchi T, Hitomi Y, Shono A, Khor SS, Omae Y, Kojima K, Kawai Y, Nagasaki M, Kaku Y, Okamoto T, Ohwada Y, Ohta K, Okuda Y, Fujimaru R, Hatae K, Kumagai N, Sawanobori E, Nakazato H, Ohtsuka Y, Nakanishi K, Shima Y, Tanaka R, Ashida A, Kamei K, Ishikura K, Nozu K, Tokunaga K, Iijima K. Strong Association of the HLA-DR/DQ Locus with Childhood Steroid-Sensitive Nephrotic Syndrome in the Japanese Population. J Am Soc Nephrol 2018; 29:2189-2199. [PMID: 30012571 DOI: 10.1681/asn.2017080859] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 05/11/2018] [Indexed: 12/26/2022] Open
Abstract
Background Nephrotic syndrome is the most common cause of chronic glomerular disease in children. Most of these patients develop steroid-sensitive nephrotic syndrome (SSNS), but the loci conferring susceptibility to childhood SSNS are mainly unknown.Methods We conducted a genome-wide association study (GWAS) in the Japanese population; 224 patients with childhood SSNS and 419 adult healthy controls were genotyped using the Affymetrix Japonica Array in the discovery stage. Imputation for six HLA genes (HLA-A, -C, -B, -DRB1, -DQB1, and -DPB1) was conducted on the basis of Japanese-specific references. We performed genotyping for HLA-DRB1/-DQB1 using a sequence-specific oligonucleotide-probing method on a Luminex platform. Whole-genome imputation was conducted using a phased reference panel of 2049 healthy Japanese individuals. Replication was performed in an independent Japanese sample set including 216 patients and 719 healthy controls. We genotyped candidate single-nucleotide polymorphisms using the DigiTag2 assay.Results The most significant association was detected in the HLA-DR/DQ region and replicated (rs4642516 [minor allele G], combined Pallelic=7.84×10-23; odds ratio [OR], 0.33; 95% confidence interval [95% CI], 0.26 to 0.41; rs3134996 [minor allele A], combined Pallelic=1.72×10-25; OR, 0.29; 95% CI, 0.23 to 0.37). HLA-DRB1*08:02 (Pc=1.82×10-9; OR, 2.62; 95% CI, 1.94 to 3.54) and HLA-DQB1*06:04 (Pc=2.09×10-12; OR, 0.10; 95% CI, 0.05 to 0.21) were considered primary HLA alleles associated with childhood SSNS. HLA-DRB1*08:02-DQB1*03:02 (Pc=7.01×10-11; OR, 3.60; 95% CI, 2.46 to 5.29) was identified as the most significant genetic susceptibility factor.Conclusions The most significant association with childhood SSNS was detected in the HLA-DR/DQ region. Further HLA allele/haplotype analyses should enhance our understanding of molecular mechanisms underlying SSNS.
Collapse
Affiliation(s)
- Xiaoyuan Jia
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuki Hitomi
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akemi Shono
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Seik-Soon Khor
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Omae
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaname Kojima
- Department of Integrative Genomics, Tohoku Medical Megabank Organization.,Graduate School of Medicine, and.,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yosuke Kawai
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization.,Graduate School of Medicine, and.,Graduate School of Information Sciences, Tohoku University, Sendai, Japan
| | - Yoshitsugu Kaku
- Department of Nephrology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takayuki Okamoto
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Yoko Ohwada
- Department of Pediatrics, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | - Kazuhide Ohta
- Department of Pediatrics, Kanazawa Medical Center, Kanazawa, Japan
| | - Yusuke Okuda
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Rika Fujimaru
- Department of Pediatrics, Osaka City General Hospital, Osaka, Japan
| | - Ken Hatae
- Department of Pediatrics, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Naonori Kumagai
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Emi Sawanobori
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hitoshi Nakazato
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasufumi Ohtsuka
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichi Nakanishi
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Yuko Shima
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | - Ryojiro Tanaka
- Department of Nephrology, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Akira Ashida
- Department of Pediatrics, Osaka Medical College, Osaka, Japan; and
| | - Koichi Kamei
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Ishikura
- Division of Nephrology and Rheumatology, National Center for Child Health and Development, Tokyo, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Katsushi Tokunaga
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan;
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan;
| | | |
Collapse
|
3
|
Kennedy AE, Kamdar KY, Lupo PJ, Okcu MF, Scheurer ME, Dorak MT. Genetic markers in a multi-ethnic sample for childhood acute lymphoblastic leukemia risk. Leuk Lymphoma 2014; 56:169-74. [DOI: 10.3109/10428194.2014.910662] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Replication of british rheumatoid arthritis susceptibility Loci in two unrelated chinese population groups. Clin Dev Immunol 2013; 2013:891306. [PMID: 24082910 PMCID: PMC3776545 DOI: 10.1155/2013/891306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022]
Abstract
Previous genome-wide association study by WTCCC identified many susceptibility loci of common autoimmune diseases in British, including rheumatoid arthritis (RA). Because of the genetic heterogeneity of RA, it is necessary to replicate these susceptibility loci in other populations. Here, three SNPs with strong RA association signal in the British were analyzed in Han Chinese, and two SNPs (rs6457617 and rs11761231) were genotyped in the test cohort firstly. The rs6457617 was significantly associated with RA in the test cohort. The individuals bearing the homozygous genotype CC had 0.39-fold risk than these bearing the wild-type genotype TT (P = 0.004, OR 0.39, [95% CI 0.21-0.74]). And the protective effect of allele C was confirmed in another validation cohort with 1514 samples (P genotye CC/TT = 5.9 × 10(-10), OR 0.34, [95% CI 0.24-0.48]). The rs6457617 can be used as a tagSNP of HLA-DQA1∗03 which encoded MHC-II α chain. Since MHC restriction is important for primary T-cells in positive selection and negative selection stages, MHC protein polymorphisms may be implicated in shaping the T-cell repertoire, including the emergence of a T-cell clone involved in the inflammatory arthritis.
Collapse
|
5
|
Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VHF, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe ADL, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, et alLan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VHF, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe ADL, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, Chen CY, Vermeulen R, Wu J, Lim WY, Chen KC, Chow WH, Ji BT, Chan JKC, Chu M, Li YJ, Yokota J, Li J, Chen H, Xiang YB, Yu CJ, Kunitoh H, Wu G, Jin L, Lo YL, Shiraishi K, Chen YH, Lin HC, Wu T, Wu YL, Yang PC, Zhou B, Shin MH, Fraumeni JF, Lin D, Chanock SJ, Rothman N. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet 2012; 44:1330-5. [PMID: 23143601 DOI: 10.1038/ng.2456] [Show More Authors] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10(-6)) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10(-18)), 6q22.2 (rs9387478, P = 4.14 × 10(-10)) and 6p21.32 (rs2395185, P = 9.51 × 10(-9)). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking.
Collapse
Affiliation(s)
- Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|