1
|
Bjarkø VV, Haug EB, Langhammer A, Ruiz PLD, Carlsson S, Birkeland KI, Berg TJ, Sørgjerd EP, Lyssenko V, Åsvold BO. Clinical utility of novel diabetes subgroups in predicting vascular complications and mortality: up to 25 years of follow-up of the HUNT Study. BMJ Open Diabetes Res Care 2024; 12:e004493. [PMID: 39577876 PMCID: PMC11590787 DOI: 10.1136/bmjdrc-2024-004493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024] Open
Abstract
INTRODUCTION Cluster analysis has previously revealed five reproducible subgroups of diabetes, differing in risks of diabetic complications. We aimed to examine the clusters' predictive ability for vascular complications as compared with established risk factors in a general adult diabetes population. RESEARCH DESIGN AND METHODS Participants from the second (HUNT2, 1995-1997) and third (HUNT3, 2006-2008) surveys of the Norwegian population-based Trøndelag Health Study (HUNT Study) with adult-onset diabetes were included (n=1899). To identify diabetes subgroups, we used the same variables (age at diagnosis, body mass index, HbA1c, homeostasis model assessment estimates of beta cell function and insulin resistance, and glutamic acid decarboxylase antibodies) and the same data-driven clustering technique as in previous studies. We used Cox proportional hazards models to investigate associations between clusters and risks of vascular complications and mortality. We estimated the C-index and R2 to compare predictive abilities of the clusters to those of established risk factors as continuous variables. All models included adjustment for age, sex, diabetes duration and time of inclusion. RESULTS We reproduced five subgroups with similar key characteristics as identified in previous studies. During median follow-up of 9-13 years (differing between outcomes), the clusters were associated with different risks of vascular complications and all-cause mortality. However, in prediction models, individual established risk factors were at least as good predictors as cluster assignment for all outcomes. For example, for retinopathy, the C-index for the model including clusters (0.65 (95% CI 0.63 to 0.68)) was similar to that of HbA1c (0.65 (95% CI 0.63 to 0.68)) or fasting C-peptide (0.66 (95% CI 0.63 to 0.68)) alone. For chronic kidney disease, the C-index for clusters (0.74 (95% CI 0.72 to 0.76)) was similar to that of triglyceride/high-density lipoprotein ratio (0.74 (95% CI 0.71 to 0.76)) or fasting C-peptide (0.74 (95% CI 0.72 to 0.76)), and baseline estimated glomerular filtration rate yielded a C-index of 0.76 (95% CI 0.74 to 0.78). CONCLUSIONS Cluster assignment did not provide better prediction of vascular complications or all-cause mortality compared with established risk factors.
Collapse
Affiliation(s)
- Vera Vik Bjarkø
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| | - Eirin Beate Haug
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | | | - Sofia Carlsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kare I Birkeland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tore Julsrud Berg
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Oslo University Hospital, Oslo, Norway
| | - Elin Pettersen Sørgjerd
- HUNT Research Center, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Valeriya Lyssenko
- Department of Clinical Science, Center for Diabetes Research, University of Bergen, Bergen, Norway
| | - Bjørn Olav Åsvold
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St Olavs Hospital Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Alexander L, Cheng-ting T, Åke L, Johan J. Type 1 diabetes, celiac disease, and autoimmune thyroiditis autoantibodies in population-based type 2 diabetes patients. J Clin Transl Endocrinol 2024; 37:100367. [PMID: 39308768 PMCID: PMC11416225 DOI: 10.1016/j.jcte.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Aims The study aims were to determine autoantibodies associated with type 1 diabetes (T1D), celiac disease (CD) and autoimmune thyroid disease (AITD) in individuals living with type 2 diabetes (T2D) compared to T1D and matched controls. Methods Individuals with T1D and T2D were randomly identified in health-care registers. Blood was collected through home-capillary sampling and autoantibodies associated with either T1D against glutamic acid decarboxylase (GADA), insulin (IAA), insulinoma antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A), CD against tissue transglutaminase (tTGA) or AITD against thyroid peroxidase (TPOA) were determined in an automated, multiplex Antibody Detection by Agglutination-PCR (ADAP) assay. Results GADA were detected in 46 % (88/191) of T1D and increased to 6.2 % (23/372) in T2D compared to 2.6 % (7/259) of controls (p = 0.0367). tTGA was low (1.1-2.6 %) and not different in between the study cohorts, nonetheless, in T1D tTGA was associated to islet autoantibodies. TPOA was more frequent in T1D, 27.1 % (53/191), compared to either T2D, 14.8 % (55/372; p = 0.0002) or controls, 14.3 % (37/259) (p = 0.0004). Overall, TPOA was more frequent in GADA positive (34.8 %; 8/23) than negative (13.5 %; 47/349; p = 0.0053) T2D individuals. Conclusion It's suggested that analyzing GADA and TPOA may refine the autoimmune landscape in individuals clinically classified as T2D.
Collapse
Affiliation(s)
- Lind Alexander
- Department of Clinical Sciences Malmö, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | | | - Lernmark Åke
- Department of Clinical Sciences Malmö, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Jendle Johan
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Sweden
| |
Collapse
|
3
|
Brooks-Worrell BM, Tjaden AH, Edelstein SL, Palomino B, Utzschneider KM, Arslanian S, Mather KJ, Buchanan TA, Nadeau KJ, Atkinson K, Barengolts E, Kahn SE, Palmer JP. Islet Autoimmunity in Adults With Impaired Glucose Tolerance and Recently Diagnosed, Treatment Naïve Type 2 Diabetes in the Restoring Insulin SEcretion (RISE) Study. Front Immunol 2021; 12:640251. [PMID: 33981301 PMCID: PMC8108986 DOI: 10.3389/fimmu.2021.640251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
The presence of islet autoantibodies and islet reactive T cells (T+) in adults with established type 2 diabetes (T2D) have been shown to identify those patients with more severe β-cell dysfunction. However, at what stage in the progression toward clinical T2D does islet autoimmunity emerge as an important component influencing β-cell dysfunction? In this ancillary study to the Restoring Insulin SEcretion (RISE) Study, we investigated the prevalence of and association with β-cell dysfunction of T+ and autoantibodies to the 65 kDa glutamic acid decarboxylase antigen (GADA) in obese pre-diabetes adults with impaired glucose tolerance (IGT) and recently diagnosed treatment naïve (Ndx) T2D. We further investigated the effect of 12 months of RISE interventions (metformin or liraglutide plus metformin, or with 3 months of insulin glargine followed by 9 months of metformin or placebo) on islet autoimmune reactivity. We observed GADA(+) in 1.6% of NdxT2D and 4.6% of IGT at baseline, and in 1.6% of NdxT2D and 5.3% of IGT at 12 months, but no significant associations between GADA(+) and β-cell function. T(+) was observed in 50% of NdxT2D and 60.4% of IGT at baseline, and in 68.4% of NdxT2D and 83.9% of IGT at 12 months. T(+) NdxT2D were observed to have significantly higher fasting glucose (p = 0.004), and 2 h glucose (p = 0.0032), but significantly lower steady state C-peptide (sscpep, p = 0.007) compared to T(-) NdxT2D. T(+) IGT participants demonstrated lower but not significant (p = 0.025) acute (first phase) C-peptide response to glucose (ACPRg) compared to T(-) IGT. With metformin treatment, T(+) participants were observed to have a significantly lower Hemoglobin A1c (HbA1c, p = 0.002) and fasting C-peptide (p = 0.002) compared to T(-), whereas T(+) treated with liraglutide + metformin had significantly lower sscpep (p = 0.010) compared to T(-) participants. In the placebo group, T(+) participants demonstrated significantly lower ACPRg (p = 0.001) compared to T(-) participants. In summary, T(+) were found in a large percentage of obese pre-diabetes adults with IGT and in recently diagnosed T2D. Moreover, T(+) were significantly correlated with treatment effects and β-cell dysfunction. Our results demonstrate that T(+) are an important component in T2D.
Collapse
Affiliation(s)
- Barbara M Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Ashley H Tjaden
- Biostatistics Center, Milken School of Public Health, George Washington University Biostatistics Center, Rockville, MD, United States
| | - Sharon L Edelstein
- Biostatistics Center, Milken School of Public Health, George Washington University Biostatistics Center, Rockville, MD, United States
| | - Brenda Palomino
- Seattle Institute for Biochemical and Clinical Research, Seattle, WA, United States
| | - Kristina M Utzschneider
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Silva Arslanian
- Department of Medicine, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Kieren J Mather
- Indiana University School of Medicine, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Thomas A Buchanan
- University of Southern California Keck School of Medicine/Kaiser Permanente Southern California, Los Angeles, CA, United States
| | - Kristen J Nadeau
- University of Colorado Anschutz Medical Campus/Children's Hospital Colorado, Aurora, CO, United States
| | - Karen Atkinson
- Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Elena Barengolts
- University of Chicago Clinical Research Center and Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Steven E Kahn
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | - Jerry P Palmer
- Department of Medicine, University of Washington, Seattle, WA, United States.,Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States
| | | |
Collapse
|
4
|
Li X, Chen Y, Xie Y, Xiang Y, Yan X, Huang G, Zhou Z. Decline Pattern of Beta-cell Function in Adult-onset Latent Autoimmune Diabetes: an 8-year Prospective Study. J Clin Endocrinol Metab 2020; 105:5822597. [PMID: 32307525 DOI: 10.1210/clinem/dgaa205] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/18/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To explore the decline pattern and possible determinants of beta-cell function progression in patients with latent-onset autoimmune diabetes in adults (LADA). RESEARCH DESIGN AND METHODS In this 8-year prospective study, 106 LADA individuals underwent annual follow-up and their pattern of beta-cell function progression was assessed. Beta-cell function failure was defined by fasting C-peptide (FCP) < 75 pmol/L. Other clinical characteristics, including age of onset, body mass index (BMI), and glutamic acid decarboxylase autoantibody (GADA) titer, were analyzed to find out possible determinants of beta-cell function progression. RESULTS The dropout rate was 4.7%. During the 8-year follow-up period, 29 (28.7%) of the 101 subjects developed beta-cell function failure. The decline pattern of C-peptide in LADA was biphasic, showing an initial rapid linear progression and then followed by a stable mode. The declination speed of FCP was 55.19 pmol/L/year (95% CI, -62.54 to -47.84, P < 0.001) during the first 5 years and 4.62 pmol/L/year (95% CI, -69.83 to 60.60, P = 0.790) thereafter. Further analysis showed that GADA titer was the most valuable discriminatory parameter related to a higher risk of development of beta-cell function failure (GADA titer of 173.5 WHO units/mL; area under the curve [AUC], 0.824). Beta-cell function failure occurred in 71.3% of high-GADA titer patients while only 6.2% of low-titer patients. CONCLUSIONS The decline pattern of C-peptide was a fast-followed-by-slow biphasic mode, with about a quarter of LADA patients developing beta-cell function failure during the first 8 years. GADA titer less than 173.5 WHO units /mL was propitious for the preservation of beta-cell function.
Collapse
Affiliation(s)
- Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yan Chen
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yuting Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Yufei Xiang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Xiang Yan
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Gan Huang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, China
| |
Collapse
|
5
|
Rolandsson O, Hampe CS, Sharp SJ, Ardanaz E, Boeing H, Fagherazzi G, Mancini FR, Nilsson PM, Overvad K, Chirlaque MD, Dorronsoro M, Gunter MJ, Kaaks R, Key TJ, Khaw KT, Krogh V, Kühn T, Palli D, Panico S, Sacerdote C, Sánchez MJ, Severi G, Spijkerman AMW, Tumino R, van der Schouw YT, Riboli E, Forouhi NG, Langenberg C, Wareham NJ. Autoimmunity plays a role in the onset of diabetes after 40 years of age. Diabetologia 2020; 63:266-277. [PMID: 31713011 PMCID: PMC6946728 DOI: 10.1007/s00125-019-05016-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS Type 1 and type 2 diabetes differ with respect to pathophysiological factors such as beta cell function, insulin resistance and phenotypic appearance, but there may be overlap between the two forms of diabetes. However, there are relatively few prospective studies that have characterised the relationship between autoimmunity and incident diabetes. We investigated associations of antibodies against the 65 kDa isoform of GAD (GAD65) with type 1 diabetes and type 2 diabetes genetic risk scores and incident diabetes in adults in European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct, a case-cohort study nested in the EPIC cohort. METHODS GAD65 antibodies were analysed in EPIC participants (over 40 years of age and free of known diabetes at baseline) by radioligand binding assay in a random subcohort (n = 15,802) and in incident diabetes cases (n = 11,981). Type 1 diabetes and type 2 diabetes genetic risk scores were calculated. Associations between GAD65 antibodies and incident diabetes were estimated using Prentice-weighted Cox regression. RESULTS GAD65 antibody positivity at baseline was associated with development of diabetes during a median follow-up time of 10.9 years (HR for GAD65 antibody positive vs negative 1.78; 95% CI 1.43, 2.20) after adjustment for sex, centre, physical activity, smoking status and education. The genetic risk score for type 1 diabetes but not type 2 diabetes was associated with GAD65 antibody positivity in both the subcohort (OR per SD genetic risk 1.24; 95% CI 1.03, 1.50) and incident cases (OR 1.97; 95% CI 1.72, 2.26) after adjusting for age and sex. The risk of incident diabetes in those in the top tertile of the type 1 diabetes genetic risk score who were also GAD65 antibody positive was 3.23 (95% CI 2.10, 4.97) compared with all other individuals, suggesting that 1.8% of incident diabetes in adults was attributable to this combination of risk factors. CONCLUSIONS/INTERPRETATION Our study indicates that incident diabetes in adults has an element of autoimmune aetiology. Thus, there might be a reason to re-evaluate the present subclassification of diabetes in adulthood.
Collapse
Affiliation(s)
- Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, 901 87, Umeå, Sweden.
| | - Christiane S Hampe
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Stephen J Sharp
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Eva Ardanaz
- Navarre Public Health Institute, Pamplona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Guy Fagherazzi
- CESP, Faculty of Medicine - University Paris-South, Faculty of Medicine Inserm U1018, University Paris-Saclay, Villejuif, France
| | - Francesca Romana Mancini
- CESP, Faculty of Medicine - University Paris-South, Faculty of Medicine Inserm U1018, University Paris-Saclay, Villejuif, France
| | - Peter M Nilsson
- Department of Clinical Sciences, Clinical Research Center, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Maria-Dolores Chirlaque
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Miren Dorronsoro
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
- Instituto BIO-Donostia, Basque Government, San Sebastian, Spain
| | - Marc J Gunter
- International Agency for Research on Cancer, Lyon, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Azienda Ospedaliera Universitaria (AOU) Citta' della Salute e della Scienza Hospital-University of Turin and Center for Cancer Prevention (CPO), Torino, Italy
| | - Maria-José Sánchez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Publica), Madrid, Spain
- Andalusian School of Public Health, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Gianluca Severi
- Inserm, Center for Research in Epidemiology and Population Health (CESP), Université Paris-Sud, Université Paris-Saclay, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Gustave Roussy, Villejuif, France
- Facultés de Medicine, Université Paris-Sud, Université Paris-Saclay, University of Versailles Saint-Quentin-en-Yvelines (UVSQ) Gustave Roussy, Villejuif, France
| | | | - Rosario Tumino
- Cancer Registry and Histopathology Department, 'Civic - M.P. Arezzo' Hospital, Ragusa, Italy
- Associazone Iblea per la Ricerca Epidemiologica - Organizazione Non Lucrativa di Utilità Sociale, Ragusa, Italy
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elio Riboli
- School of Public Health, Imperial College London, London, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge, UK
| |
Collapse
|
6
|
Abstract
Physiological plasticity enables homeostasis to be maintained in biological systems, but when such allostasis fails, then disease can develop. In a new population-based study by Rolandsson et al (https://doi.org/10.1007/s00125-019-05016-3), autoimmunity, defined by an immunogenotype, predicted adult-onset non-insulin requiring diabetes. Type 1 diabetes is no longer viewed as a disease confined to children, with a significant proportion, maybe the majority, presenting in adulthood. Such cases masquerade as type 2 diabetes and their identification has clinical utility. Nevertheless, in this study, autoimmunity had a limited effect on the overall risk of adults developing diabetes.
Collapse
Affiliation(s)
- R David Leslie
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
| | - Tanwi Vartak
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| |
Collapse
|
7
|
de Candia P, Prattichizzo F, Garavelli S, De Rosa V, Galgani M, Di Rella F, Spagnuolo MI, Colamatteo A, Fusco C, Micillo T, Bruzzaniti S, Ceriello A, Puca AA, Matarese G. Type 2 Diabetes: How Much of an Autoimmune Disease? Front Endocrinol (Lausanne) 2019; 10:451. [PMID: 31333589 PMCID: PMC6620611 DOI: 10.3389/fendo.2019.00451] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/21/2019] [Indexed: 01/12/2023] Open
Abstract
Type 2 diabetes (T2D) is characterized by a progressive status of chronic, low-grade inflammation (LGI) that accompanies the whole trajectory of the disease, from its inception to complication development. Accumulating evidence is disclosing a long list of possible "triggers" of inflammatory responses, many of which are promoted by unhealthy lifestyle choices and advanced age. Diabetic patients show an altered number and function of immune cells, of both innate and acquired immunity. Reactive autoantibodies against islet antigens can be detected in a subpopulation of patients, while emerging data are also suggesting an altered function of specific T lymphocyte populations, including T regulatory (Treg) cells. These observations led to the hypothesis that part of the inflammatory response mounting in T2D is attributable to an autoimmune phenomenon. Here, we review recent data supporting this framework, with a specific focus on both tissue resident and circulating Treg populations. We also propose that selective interception (or expansion) of T cell subsets could be an alternative avenue to dampen inappropriate inflammatory responses without compromising immune responses.
Collapse
Affiliation(s)
- Paola de Candia
- IRCCS MultiMedica, Milan, Italy
- *Correspondence: Paola de Candia
| | | | - Silvia Garavelli
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Unità di NeuroImmunologia, Fondazione Santa Lucia, Rome, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Francesca Di Rella
- Dipartimento di Senologia, Oncologia Medica, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maria Immacolata Spagnuolo
- Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Alessandra Colamatteo
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Clorinda Fusco
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Teresa Micillo
- Dipartimento di Biologia, Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
| | - Antonio Ceriello
- IRCCS MultiMedica, Milan, Italy
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Annibale A. Puca
- IRCCS MultiMedica, Milan, Italy
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), Naples, Italy
- Treg Cell Laboratory, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli “Federico II”, Naples, Italy
- Giuseppe Matarese
| |
Collapse
|