1
|
Mucinski JM, Distefano G, Dubé J, Toledo FGS, Coen PM, Goodpaster BH, DeLany JP. Insulin sensitivity and skeletal muscle mitochondrial respiration in Black and White women with obesity. J Clin Endocrinol Metab 2024:dgae600. [PMID: 39207205 DOI: 10.1210/clinem/dgae600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES Non-Hispanic black women (BW) have a greater risk of type 2 diabetes (T2D) and insulin resistance (IR) compared to non-Hispanic white women (WW). The mechanisms leading to these differences are not understood, and it is unclear whether synergistic effects of race and obesity impact disease risk. To understand the interaction of race and weight, hepatic and peripheral IR were compared in WW and BW with and without obesity. METHODS Hepatic and peripheral IR was measured by a labeled, hyperinsulinemic-euglycemic clamp in BW (n=32) and WW (n=32) with and without obesity. Measurements of body composition, cardiorespiratory fitness, and skeletal muscle (SM) respiration were completed. Data were analyzed by mixed model ANOVA. RESULTS Subjects with obesity had greater hepatic and peripheral IR and lower SM respiration (P<0.001). Despite 14% greater insulin (P=0.066), BW tended to have lower peripheral glucose disposal (Rd; P=0.062), which was driven by women without obesity (P=0.002). BW had significantly lower glucose production (P=0.005), hepatic IR (P=0.024), and maximal coupled and uncoupled respiration (P<0.001) than WW. Maximal coupled and uncoupled SM mitochondrial respiration was strongly correlated with peripheral and hepatic IR (P<0.01). CONCLUSION While BW without obesity had lower Rd than WW, race and obesity did not synergistically impact peripheral IR. Paradoxically, WW with obesity had greater hepatic IR compared to BW. Relationships between SM respiration and IR persisted across a range of body weight. These data provide support for therapies in BW, like exercise, that improve SM mitochondrial respiration to reduce IR and T2D risk.
Collapse
Affiliation(s)
| | | | - John Dubé
- School of Arts, Science, and Business, Chatham University, Pittsburgh, PA
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Paul M Coen
- AdventHealth Orlando, Translational Research Institute, Orlando, FL
| | | | - James P DeLany
- AdventHealth Orlando, Translational Research Institute, Orlando, FL
| |
Collapse
|
2
|
Taylor SI, Montasser ME, Yuen AH, Fan H, Yazdi ZS, Whitlatch HB, Mitchell BD, Shuldiner AR, Muniyappa R, Streeten EA, Beitelshees AL. Acute pharmacodynamic responses to exenatide: Drug-induced increases in insulin secretion and glucose effectiveness. Diabetes Obes Metab 2023; 25:2586-2594. [PMID: 37264484 PMCID: PMC10524849 DOI: 10.1111/dom.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
AIM Glucagon-like peptide-1 receptor agonists provide multiple benefits to patients with type 2 diabetes, including improved glycaemic control, weight loss and decreased risk of major adverse cardiovascular events. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. METHODS Exenatide (5 μg, subcutaneously) or saline (0.2 ml, subcutaneously) was administered to 62 healthy volunteers. Frequently sampled intravenous glucose tolerance tests were conducted to assess the impact of exenatide on insulin secretion and insulin action. This pilot study was a crossover design in which participants received exenatide and saline in random order. RESULTS Exenatide increased first phase insulin secretion 1.9-fold (p = 1.9 × 10-9 ) and accelerated the rate of glucose disappearance 2.4-fold (p = 2 × 10-10 ). Minimal model analysis showed that exenatide increased glucose effectiveness (Sg ) by 32% (p = .0008) but did not significantly affect insulin sensitivity (Si ). The exenatide-induced increase in insulin secretion made the largest contribution to interindividual variation in exenatide-induced acceleration of glucose disappearance while interindividual variation in the drug effect on Sg contributed to a lesser extent (β = 0.58 or 0.27, respectively). CONCLUSIONS This pilot study provides validation for the value of a frequently sampled intravenous glucose tolerance test (including minimal model analysis) to provide primary data for our ongoing pharmacogenomic study of pharmacodynamic effects of semaglutide (NCT05071898). Three endpoints provide quantitative assessments of the effects of glucagon-like peptide-1 receptor agonists on glucose metabolism: first phase insulin secretion, glucose disappearance rates and glucose effectiveness.
Collapse
Affiliation(s)
- Simeon I. Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley H. Yuen
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hubert Fan
- Diabetes, Endocrinology, and Obesity Branch, National institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhinoosossadat Shahidzadeh Yazdi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary B. Whitlatch
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan R. Shuldiner
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, National institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth A. Streeten
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amber L. Beitelshees
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
3
|
Taylor SI, Montasser ME, Yuen AH, Fan H, Yazdi ZS, Whitlatch HB, Mitchell BD, Shuldiner AR, Muniyappa R, Streeten EA, Beitelshees AL. Acute pharmacodynamic responses to exenatide: Drug-induced increases in insulin secretion and glucose effectiveness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.15.23287166. [PMID: 36993363 PMCID: PMC10055582 DOI: 10.1101/2023.03.15.23287166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Background GLP1R agonists provide multiple benefits to patients with type 2 diabetes - including improved glycemic control, weight loss, and decreased risk of major adverse cardiovascular events. Because drug responses vary among individuals, we initiated investigations to identify genetic variants associated with the magnitude of drug responses. Methods Exenatide (5 µg, sc) or saline (0.2 mL, sc) was administered to 62 healthy volunteers. Frequently sampled intravenous glucose tolerance tests were conducted to assess the impact of exenatide on insulin secretion and insulin action. This pilot study was designed as a crossover study in which participants received exenatide and saline in random order. Results Exenatide increased first phase insulin secretion 1.9-fold (p=1.9×10 -9 ) and accelerated the rate of glucose disappearance 2.4-fold (p=2×10 -10 ). Minimal model analysis demonstrated that exenatide increased glucose effectiveness (S g ) by 32% (p=0.0008) but did not significantly affect insulin sensitivity (S i ). The exenatide-induced increase in insulin secretion made the largest contribution to inter-individual variation in exenatide-induced acceleration of glucose disappearance while inter-individual variation in the drug effect on S g contributed to a lesser extent (β=0.58 or 0.27, respectively). Conclusions This pilot study provides validation for the value of an FSIGT (including minimal model analysis) to provide primary data for our ongoing pharmacogenomic study of pharmacodynamic effects of semaglutide ( NCT05071898 ). Three endpoints provide quantitative assessments of GLP1R agonists' effects on glucose metabolism: first phase insulin secretion, glucose disappearance rates, and glucose effectiveness. Registration NCT02462421 (clinicaltrials.gov). Funding American Diabetes Association (1-16-ICTS-112); National Institute of Diabetes and Digestive and Kidney Disease (R01DK130238, T32DK098107, P30DK072488).
Collapse
Affiliation(s)
- Simeon I. Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashley H. Yuen
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hubert Fan
- Diabetes, Endocrinology, and Obesity Branch, National institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhinoosossadat Shahidzadeh Yazdi
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hilary B. Whitlatch
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alan R. Shuldiner
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ranganath Muniyappa
- Diabetes, Endocrinology, and Obesity Branch, National institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth A. Streeten
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amber L. Beitelshees
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Hao H, Chen Y, Xiaojuan J, Siqi Z, Hailiang C, Xiaoxing S, Qikai W, Mingquan X, Jiangzhou F, Hongfeng G. The Association Between METS-IR and Serum Ferritin Level in United States Female: A Cross-Sectional Study Based on NHANES. Front Med (Lausanne) 2022; 9:925344. [PMID: 35836938 PMCID: PMC9273928 DOI: 10.3389/fmed.2022.925344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aim The aim of this study was to investigate the association between the metabolic score for insulin resistance (METS-IR) and serum ferritin in females from the United States. Methods We conducted a cross-sectional study with 4,182 participants from the National Health and Nutrition Examination Survey (NHANES). We used METS-IR and serum ferritin as the independent and dependent variables in this study and investigated the relationship by using multiple linear regression and verified the non-linear relationship with a smooth curve fit and threshold effect model. Results There was a positive relationship between METS-IR and serum ferritin, with an effect value of (β = 0.29, 95% CI: 0.14–0.44) in a fully adjusted model adjusted for potential confounders. This positive correlation became more significant as METS-IR increased (p for trend < 0.001). Subsequent subgroup analyses showed that sensitive cohorts were those aged ≥40 years, black, and with a body mass index (BMI) < 24.9 kg/m2. In a smoothed curve fit analysis, the correlation between METS-IR and serum ferritin was a straight linear relationship in all participants included in this study, but when stratified by age, race, and BMI, this positive correlation in the participants who were aged ≥40 years old, other race, and had a BMI < 24.9 kg/m2 was non-linear. Conclusions There was a positive association between METS-IR and serum ferritin in United States females, and this positive association was more pronounced in participants aged ≥40 years, black race and BMI < 24.9 kg/m2. This positive association was non-linear in the subgroups aged ≥40 years, white race and BMI < 24.9 kg/m2, with inflection points for METS-IR of 69.97, 67.84 and 35.84 in these respective subgroups.
Collapse
Affiliation(s)
- Han Hao
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Yan Chen
- Department of General Practice, Wuhu City Second People‘s Hospital, Wuhu, China
| | - Ji Xiaojuan
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Zhang Siqi
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Chu Hailiang
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Sun Xiaoxing
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Wang Qikai
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Xing Mingquan
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
| | - Feng Jiangzhou
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
- *Correspondence: Feng Jiangzhou
| | - Ge Hongfeng
- Department of Hematology, Anhui Medical University Affiliated to Bozhou People's Hospital, Bozhou, China
- Ge Hongfeng
| |
Collapse
|
5
|
Koh HCE, Patterson BW, Reeds DN, Mittendorfer B. Insulin sensitivity and kinetics in African American and White people with obesity: Insights from different study protocols. Obesity (Silver Spring) 2022; 30:655-665. [PMID: 35083870 PMCID: PMC8866210 DOI: 10.1002/oby.23363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Studies that used an intravenous glucose tolerance test (IVGTT) have suggested that race is an important modulator of insulin sensitivity, β-cell function, and insulin clearance. However, the validity of the IVGTT has been challenged. METHODS This study assessed insulin sensitivity and insulin kinetics in non-Hispanic White (NHW, n = 29) and African American (AA, n = 14) people with obesity by using a hyperinsulinemic-euglycemic pancreatic clamp with glucose tracer infusion, an oral glucose tolerance test (OGTT), and an IVGTT. RESULTS Hepatic insulin sensitivity was better in AA participants than in NHW participants. Muscle insulin sensitivity, insulin secretion in relation to plasma glucose during the OGTT, and insulin clearance during basal conditions during the hyperinsulinemic-euglycemic pancreatic clamp and during the OGTT were not different between AA participants and NHW participants. The acute insulin response to the large glucose bolus administered during the IVGTT was double in AA participants compared with NHW participants because of increased insulin secretion and reduced insulin clearance. CONCLUSIONS AA individuals are not more insulin resistant than NHW individuals, and the β-cell response to glucose ingestion and postprandial insulin clearance are not different between AA individuals and NHW individuals. However, AA individuals have greater insulin secretory capacity and reduced insulin clearance capacity than NHW individuals and might be susceptible to hyperinsulinemia after consuming very large amounts of glucose.
Collapse
Affiliation(s)
- Han-Chow E Koh
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruce W Patterson
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dominic N Reeds
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|